作者: Kevin J. Gaston , Richard G. Davies , Caroline E. Gascoigne , Mark Williamson
DOI: 10.1111/J.1466-822X.2004.00123.X
关键词: Ecology 、 Mathematics 、 Threatened species 、 Log-normal distribution 、 Constraint (information theory) 、 Range (biology) 、 Biogeography 、 Species distribution 、 Distribution (mathematics) 、 Macroecology
摘要: Aims To determine the shape of global species–range size distributions, influence on these island species, threatened species and patterns latitudinal variation in range sizes, fit to logit-normal distributions. Location Global. Methods We take spatial distributions raptors owls world as exemplar data sets, document shapes their particular groups sizes shapes, a variety models. Results The both are extremely right skewed untransformed axes. They not lognormally distributed, has commonly been stated for nor logit-normally distributed suggested might be case. For raptors, departures from either lognormal or little mitigated by excluding that thought distort observed distribution, gradient geographical size. owls, effects more marked, with distribution becoming much closer. Conclusions A simple general description remains elusive. This constitutes significant constraint development theory how they determined. Whilst principle any given mechanistic model can tested against one empirical whatever form, mathematical would make process rapidly testing appropriateness models straightforward.