Fractal Basins in the Lorenz Model

作者: I Djellit , J. C Sprott , M. R Ferchichi

DOI: 10.1088/0256-307X/28/6/060501

关键词: Differential equationComputer simulationCHAOS (operating system)Applied mathematicsMathematicsComplex dynamicsDiscretizationFractalLorenz system

摘要: The Lorenz mapping is a discretization of pair differential equations. It illustrates the pertinence computational chaos. We describe complex dynamics, bifurcations, and chaos in map. Fractal basins are displayed by numerical simulation.

参考文章(7)
Laura Gardini, Christian Mira, Jean-Claude Cathala, Alexandra Barugola, Chaotic Dynamics in Two-Dimensional Noninvertible Maps ,(1996)
Edward N. Lorenz, Computational chaos-a prelude to computational instability Physica D: Nonlinear Phenomena. ,vol. 35, pp. 299- 317 ,(1989) , 10.1016/0167-2789(89)90072-9
Jan Frøyland, Some symmetric, two-dimensional, dissipative maps Physica D: Nonlinear Phenomena. ,vol. 8, pp. 423- 434 ,(1983) , 10.1016/0167-2789(83)90234-8
Frederick R Marotto, Snap-back repellers imply chaos in Rn Journal of Mathematical Analysis and Applications. ,vol. 63, pp. 199- 223 ,(1978) , 10.1016/0022-247X(78)90115-4
Christos E. Frouzakis, Ioannis G. Kevrekidis, Bruce B. Peckham, A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle Physica D: Nonlinear Phenomena. ,vol. 177, pp. 101- 121 ,(2003) , 10.1016/S0167-2789(02)00751-0
R.R. Whitehead, N. MacDonald, A chaotic mapping that displays its own homoclinic structure Physica D: Nonlinear Phenomena. ,vol. 13, pp. 401- 407 ,(1984) , 10.1016/0167-2789(84)90141-6
Vyacheslav Tsybulin, Victor Yudovich, Invariant sets and attractors of quadratic mapping of plane: Computer experiment and analytical treatment Journal of Difference Equations and Applications. ,vol. 4, pp. 397- 423 ,(1998) , 10.1080/10236199808808153