Self-similar processと極限定理

作者: 前島 信

DOI: 10.11429/SUGAKU1947.40.19

关键词: Mathematics

摘要:

参考文章(41)
Florin Avram, Murad S. Taqqu, Weak Convergence of Moving Averages with Infinite Variance Birkhäuser Boston. pp. 399- 415 ,(1986) , 10.1007/978-1-4615-8162-8_18
Makoto Maejima, SOJOURNS OF MULTIDIMENSIONAL GAUSSIAN PROCESSES WITH DEPENDENT COMPONENTS The Yokohama mathematical journal = 横濱市立大學紀要. D部門, 数学. ,vol. 33, pp. 121- 130 ,(1985)
Gisiro Maruyama, Nonlinear functionals of gaussian stationary processes and their applications Springer, Berlin, Heidelberg. pp. 375- 378 ,(1976) , 10.1007/BFB0077503
Norio Kôno, Approximate upper functions of Gaussian processes Journal of Mathematics of Kyoto University. ,vol. 23, pp. 195- 209 ,(1983) , 10.1215/KJM/1250521615
M. Rosenblatt, Independence and Dependence Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory. ,(1961)
Murad S. Taqqu, Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete. ,vol. 40, pp. 203- 238 ,(1977) , 10.1007/BF00736047
Yuji Kasahara, Makoto Maejima, Weighted sums of I.I.D. Random variables attracted to integrals of stable processes Probability Theory and Related Fields. ,vol. 78, pp. 75- 96 ,(1988) , 10.1007/BF00718037
Stamatis Cambanis, A. Reza Soltani, Prediction of stable processes: Spectral and moving average representations Probability Theory and Related Fields. ,vol. 66, pp. 593- 612 ,(1984) , 10.1007/BF00531892
Wim Vervaat, Sample Path Properties of Self-Similar Processes with Stationary Increments Annals of Probability. ,vol. 13, pp. 1- 27 ,(1985) , 10.1214/AOP/1176993063
Stamatis Cambanis, Makoto Maejima, NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES, Two classes of self-similar stable processes with stationary increments Stochastic Processes and their Applications. ,vol. 32, pp. 305- 329 ,(1988) , 10.1016/0304-4149(89)90082-3