Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2

作者: Simone Rost , Andreas Fregin , Vytautas Ivaskevicius , Ernst Conzelmann , Konstanze Hörtnagel

DOI: 10.1038/NATURE02214

关键词: Coagulation Factor DeficiencyBiochemistryWarfarin resistanceClotting factorVitamin K Epoxide Reductase Complex Subunit 1Vitamin K epoxide reductaseGamma-glutamyl carboxylaseVKORC1 GeneVKORC1Biology

摘要: Coumarin derivatives such as warfarin represent the therapy of choice for long-term treatment and prevention thromboembolic events. Coumarins target blood coagulation by inhibiting vitamin K epoxide reductase multiprotein complex (VKOR). This recycles 2,3-epoxide to hydroquinone, a cofactor that is essential post-translational gamma-carboxylation several factors. Despite extensive efforts, components VKOR have not been identified. The has proposed be involved in two heritable human diseases: combined deficiency vitamin-K-dependent clotting factors type 2 (VKCFD2; Online Mendelian Inheritance Man (OMIM) 607473), resistance coumarin-type anticoagulant drugs (warfarin resistance, WR; OMIM 122700). Here we identify, using linkage information from three species, gene subunit 1 (VKORC1), which encodes small transmembrane protein endoplasmic reticulum. VKORC1 contains missense mutations both disorders warfarin-resistant rat strain. Overexpression wild-type VKORC1, but carrying VKCFD2 mutation, leads marked increase activity, sensitive inhibition.

参考文章(49)
M. R. Jackson, T. Nilsson, P. A. Peterson, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. The EMBO Journal. ,vol. 9, pp. 3153- 3162 ,(1990) , 10.1002/J.1460-2075.1990.TB07513.X
Jon D. Horton, Bruce M. Bushwick, Warfarin therapy: evolving strategies in anticoagulation. American Family Physician. ,vol. 59, pp. 635- 646 ,(1999)
M J Fasco, P C Preusch, E Hildebrandt, J W Suttie, Formation of hydroxyvitamin K by vitamin K epoxide reductase of warfarin-resistant rats. Journal of Biological Chemistry. ,vol. 258, pp. 4372- 4380 ,(1983) , 10.1016/S0021-9258(18)32633-4
Gary L. Nelsestuen, Thomas H. Zytkovicz, James Bryant Howard, The Mode of Action of Vitamin K IDENTIFICATION OF γ-CARBOXYGLUTAMIC ACID AS A COMPONENT OF PROTHROMBIN Journal of Biological Chemistry. ,vol. 249, pp. 6347- 6350 ,(1974) , 10.1016/S0021-9258(19)42259-X
B. von Brederlow, A. Fregin, S. Rost, W. Wolz, W. Eberl, S. Eber, E. Lenz, R. Schwaab, H. H. Brackmann, W. Effenberger, U. Harbrecht, L. J. Schurgers, C. Vermeer, C. R. Müller, J. Oldenburg, Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thrombosis and Haemostasis. ,vol. 84, pp. 937- 941 ,(2000) , 10.1055/S-0037-1614152
H H W Thijssen, Y P G Janssen, L T M Vervoort, Microsomal lipoamide reductase provides vitamin K epoxide reductase with reducing equivalents. Biochemical Journal. ,vol. 297, pp. 277- 280 ,(1994) , 10.1042/BJ2970277
Steven Presnell, Darrel Stafford, The vitamin K-dependent carboxylase. Thrombosis and Haemostasis. ,vol. 87, pp. 937- 946 ,(2002) , 10.1055/S-0037-1613115
Torgeir Holen, Mohammed Amarzguioui, Eshrat Babaie, Hans Prydz, Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway Nucleic Acids Research. ,vol. 31, pp. 2401- 2407 ,(2003) , 10.1093/NAR/GKG338
Jung Ja Lee, Michael J. Fasco, Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide Biochemistry. ,vol. 23, pp. 2246- 2252 ,(1984) , 10.1021/BI00305A024