Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics

作者: Krzysztof J. Fidkowski , David L. Darmofal

DOI: 10.2514/1.J050073

关键词: ResidualDiscontinuous Galerkin methodMesh generationAdjoint equationFinite volume methodMathematical optimizationComputational fluid dynamicsFinite element methodMathematicsRobustness (computer science)

摘要: Error estimation and control are critical ingredients for improving the reliability of computational simulations. Adjoint-based techniques can be used to both estimate error in chosen solution outputs provide local indicators adaptive refinement. This article reviews recent work on these fluid dynamics applications aerospace engineering. The definition adjoint as sensitivity an output residual source perturbations is derive equation, fully discrete variational formulations, adjoint-weighted method estimation. Assumptions approximations made calculations discussed. Presentation formulations enables a side-by-side comparison output-error using finite volume element method. Techniques adapting meshes also reviewed. Recent results from variety laminar Reynolds-averaged Navier-Stokes show power output-based methods robustness computations. However, challenges areas additional future research remain, including computable bounds robust mesh adaptation mechanics.

参考文章(181)
Gilbert Strang, George J. Fix, D. S. Griffin, An Analysis of the Finite Element Method ,(1973)
Paul Houston, Endre Süli, hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems SIAM Journal on Scientific Computing. ,vol. 23, pp. 1226- 1252 ,(2001) , 10.1137/S1064827500378799
O. C. Zienkiewicz, J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique International Journal for Numerical Methods in Engineering. ,vol. 33, pp. 1331- 1364 ,(1992) , 10.1002/NME.1620330702
Paul Houston, Endre Süli, A note on the design of hp-adaptive finite element methods for elliptic partial differential equations Computer Methods in Applied Mechanics and Engineering. ,vol. 194, pp. 229- 243 ,(2005) , 10.1016/J.CMA.2004.04.009
David P Young, Robin G Melvin, Michael B Bieterman, Forrester T Johnson, Satish S Samant, John E Bussoletti, A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics Journal of Computational Physics. ,vol. 92, pp. 1- 66 ,(1990) , 10.1016/0021-9991(91)90291-R
Jaume Peraire, Anthony T. Patera, Asymptotic a posteriori finite element bounds for the outputs of noncoercive problems: the Helmholtz and Burgers equations Computer Methods in Applied Mechanics and Engineering. ,vol. 171, pp. 77- 86 ,(1999) , 10.1016/S0045-7825(98)00244-8
Ralf Hartmann, Paul Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations Journal of Computational Physics. ,vol. 183, pp. 508- 532 ,(2002) , 10.1006/JCPH.2002.7206
Marius Paraschivoiu, Jaime Peraire, Anthony T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations Computer Methods in Applied Mechanics and Engineering. ,vol. 150, pp. 289- 312 ,(1997) , 10.1016/S0045-7825(97)00086-8
L. Demkowicz P. Šolı́n, None, Goal-oriented hp-adaptivity for elliptic problems Computer Methods in Applied Mechanics and Engineering. ,vol. 193, pp. 449- 468 ,(2004) , 10.1016/J.CMA.2003.09.015
Hans Forrer, Rolf Jeltsch, A Higher-Order Boundary Treatment for Cartesian-Grid Methods Journal of Computational Physics. ,vol. 140, pp. 259- 277 ,(1998) , 10.1006/JCPH.1998.5891