Some remarks on the optional decomposition theorem

作者: C. Stricker , J. A. Yan

DOI: 10.1007/BFB0101750

关键词: Mathematical financeSemimartingaleLocal martingaleGeneralizationCombinatoricsPredictable processMathematical economicsSecurity marketDecomposition theoremMathematicsElement (category theory)

摘要: Let S be a vector-valued semimartingale and Z(S) the set of all strictly positive local martingales Z with Z0=1 such that ZS is martingale. Assume V (resp. U) nonnegative process for each Z∈Z(S) ZV supermartingale ZU submartingale sup Z∈z(s),τ∈τ1 E(ZτUτ) < + ∞ where T f denotes finite stopping times). Then admits decomposition V=V0+ϕ·S−C U=U0+ψ·S+A) C A are adapted increasing processes C0=A0=0. The first result slight generalization optional theorem (see [2,4,7]) second one new. As an application to mathematical finance, if interpreted as discounted price stocks, we show contains exactly element iff market complete.

参考文章(7)
Michel Émery, Compensation de processus à variation finie non localement intégrables Séminaire de probabilités de Strasbourg. ,vol. 14, pp. 152- 160 ,(1980)
Jean-Pascal Ansel, Christophe Stricker, Couverture des actifs contingents et prix maximum Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 30, pp. 303- 315 ,(1994)
D. O. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets Probability Theory and Related Fields. ,vol. 105, pp. 459- 479 ,(1996) , 10.1007/BF01191909
Nicole El Karoui, Marie-Claire Quenez, None, Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market Siam Journal on Control and Optimization. ,vol. 33, pp. 29- 66 ,(1995) , 10.1137/S0363012992232579
H. Föllmer, Y.M. Kabanov, Optional decomposition and Lagrange multipliers Finance and Stochastics. ,vol. 2, pp. 69- 81 ,(1997) , 10.1007/S007800050033
J. Jacod, Calcul Stochastique et Problèmes de Martingales Lecture Notes in Mathematics. ,(1979) , 10.1007/BFB0064907