Winding Numbers and Average Frequencies in Phase Oscillator Networks

作者: Martin Golubitsky , Krešimir Josic , Eric Shea-Brown

DOI: 10.1007/S00332-005-0696-3

关键词: Synchronization networksMathematicsLinear subspaceMathematical analysisCoupling (physics)Network dynamicsNetwork architectureCodimensionTopologyInvariant (mathematics)Generalization

摘要: We study networks of coupled phase oscillators and show that network architecture can force relations between average frequencies the oscillators. The main tool our analysis is cell theory developed by Stewart, Golubitsky, Pivato, Torok, which provides precise corresponding class ODEs in RM gives conditions for flow-invariance certain polydiagonal subspaces all systems with a given architecture. generalizes notion fixed-point subgroups symmetries directly extends to For (but not generally RM, where M ? 2), invariant subsets codimension one arise naturally strongly restrict dynamics. say two i j coevolve if ?i = ?j flow-invariant, these must be equal. Given architecture, it shown direct way testing how coevolving form collections closely related give generalization results synchronous clusters using quotient networks, discuss implications spiking cells those connected through buffers implement coupling

参考文章(28)
Sen Song, Kenneth D. Miller, L. F. Abbott, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nature Neuroscience. ,vol. 3, pp. 919- 926 ,(2000) , 10.1038/78829
Idan Segev, A Bradford, Methods in Neuronal Modeling ,(1988)
W. Gerstner, Spiking Neuron Models Reference Module in Neuroscience and Biobehavioral Psychology#R##N#Encyclopedia of Neuroscience. pp. 277- 280 ,(2002) , 10.1016/B978-008045046-9.01405-4
Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ,(2001)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
Kurt Wiesenfeld, Peter Hadley, Attractor crowding in oscillator arrays. Physical Review Letters. ,vol. 62, pp. 1335- 1338 ,(1989) , 10.1103/PHYSREVLETT.62.1335
George Bard Ermentrout, Nancy Kopell, Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. SIAM Journal on Mathematical Analysis. ,vol. 15, pp. 215- 237 ,(1984) , 10.1137/0515019
P. Ashwin, J. W. Swift, The Dynamics of n Weakly Coupled Identical Oscillators Journal of Nonlinear Science. ,vol. 2, pp. 69- 108 ,(1992) , 10.1007/BF02429852
J. Guckenheimer, Isochrons and phaseless sets. Journal of Mathematical Biology. ,vol. 1, pp. 259- 273 ,(1975) , 10.1007/BF01273747