Parametric PSF estimation via sparseness maximization in the wavelet domain

作者: Filip Rooms , Wilfried R. Philips , Javier Portilla

DOI: 10.1117/12.571539

关键词: Kernel (statistics)Computer visionMathematicsWaveletImage restorationSignal processingParametric statisticsAlgorithmGaussian processPoint spread functionGaussianArtificial intelligence

摘要: Image degradation is a frequently encountered problem in different imaging systems, like microscopy, astronomy, digital photography, etc. The usually modeled as convolution with blurring kernel (or Point Spread Function, psf) followed by noise addition. Based on the combined knowledge about image and statistical features of original images, one able to compensate at least partially for using so-called restoration algorithms thus retrieve information hidden observer. One that often this unknown, has be estimated before actual restoration can performed. In work, we assume psf function single parameter, estimate value parameter. As an example such single-parametric psf, have used Gaussian. However, method generic applied account more realistic degradations, optical defocus,

参考文章(24)
S. Chardon, B. Vozel, K. Chehdi, Parametric Blur Estimation Using the Generalized Cross-ValidationCriterion and a Smoothness Constraint on the Image Multidimensional Systems and Signal Processing. ,vol. 10, pp. 395- 414 ,(1999) , 10.1023/A:1008492131092
Timothy J. Holmes, Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 9, pp. 1052- 1061 ,(1992) , 10.1364/JOSAA.9.001052
J.-F. Cardoso, B.H. Laheld, Equivariant adaptive source separation IEEE Transactions on Signal Processing. ,vol. 44, pp. 3017- 3030 ,(1996) , 10.1109/78.553476
S.I. Olsen, Estimation of noise in images: an evaluation CVGIP: Graphical Models and Image Processing. ,vol. 55, pp. 319- 323 ,(1993) , 10.1006/CGIP.1993.1022
Deepa Kundur, Dimitrios Hatzinakos, Blind image deconvolution revisited IEEE Signal Processing Magazine. ,vol. 13, pp. 61- 63 ,(1996) , 10.1109/79.543976
Donald B. Gennery, Determination of optical transfer function by inspection of frequency-domain plot Journal of the Optical Society of America. ,vol. 63, pp. 1571- 1577 ,(1973) , 10.1364/JOSA.63.001571
Deepa Kundur, Dimitrios Hatzinakos, Blind image deconvolution IEEE Signal Processing Magazine. ,vol. 13, pp. 43- 64 ,(1996) , 10.1109/79.489268
G. Pavlovic, A.M. Tekalp, Maximum likelihood parametric blur identification based on a continuous spatial domain model IEEE Transactions on Image Processing. ,vol. 1, pp. 496- 504 ,(1992) , 10.1109/83.199919
D. A. Fish, J. G. Walker, A. M. Brinicombe, E. R. Pike, Blind deconvolution by means of the Richardson-Lucy algorithm. Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 12, pp. 58- 65 ,(1995) , 10.1364/JOSAA.12.000058
Pierre Comon, Independent component analysis, a new concept? Signal Processing. ,vol. 36, pp. 287- 314 ,(1994) , 10.1016/0165-1684(94)90029-9