Avoiding the exactness of the Jacobian matrix in Rosenbrock formulae

作者: H. Zedan

DOI: 10.1016/0898-1221(90)90011-8

关键词: Linear stabilityMathematicsDifferential equationNumerical analysisRosenbrock methodsMathematical analysisStability (learning theory)Numerical testingOrder (group theory)Jacobian matrix and determinant

摘要: Abstract A new class of methods, for solving stiff systems, which avoids the exactness Jacobian matrix is introduced. The order conditions methods p ⩽ 5 are given. linear stability properties such analysed; numerical testing also included.

参考文章(4)
P. Kaps, G. Wanner, A study of Rosenbrock-type methods of high order Numerische Mathematik. ,vol. 38, pp. 279- 298 ,(1981) , 10.1007/BF01397096
Syvert P. N�rsett, C-Polynomials for rational approximation to the exponential function Numerische Mathematik. ,vol. 25, pp. 39- 56 ,(1975) , 10.1007/BF01419527