On the complexity of approximation streaming algorithms for the k-center problem

作者: Mahdi Abdelguerfi , Zhixiang Chen , Bin Fu

DOI: 10.1007/978-3-540-73814-5_15

关键词: Center (group theory)Euclidean spaceApproximation algorithmCombinatoricsStreaming algorithmIntegerSet (abstract data type)MathematicsTime complexityCover (topology)

摘要: We study approximation streaming algorithms for the k- center problem in fixed dimensional Euclidean space. Given an integer k ≥ 1 and a set S of n points d-dimensional space, k-center is to cover those with congruent balls smallest possible radius. For any Ɛ > 0, we devise O( k/Ɛd)-space (1 + Ɛ)-approximation algorithm problem, prove that updating time O(k/Ɛd log k) 2O(k1-1/d/Ɛd). On other hand, Ɛ)- must use Ω(k/Ɛ(d-1)/2)-bits memory. Our obtained by first designing off-line (1+Ɛ)-approximation O(n 2O(k1-1/d/Ɛd) complexity, then applying this repeatedly sketch input data stream. If fixed, our improves best-known Agarwal Procopiuc [1] has (k/Ɛ)O(k1-1/d) complexity. approximate different from another Har-Peled [16], which maintains core size O(k/Ɛd), but does not provide solution small 0.

参考文章(20)
Bin Fu, Zhixiang Chen, Sublinear Time Width-Bounded Separators and Their Application to the Protein Side-Chain Packing Problem Algorithmic Aspects in Information and Management. pp. 149- 160 ,(2006) , 10.1007/11775096_15
Bin Fu, Richard Beigel, Diagnosis in the presence of intermittent faults international symposium on algorithms and computation. pp. 427- 441 ,(2004) , 10.1007/978-3-540-30551-4_38
Matthew Hennessy, Robin Milner, On Observing Nondeterminism and Concurrency international colloquium on automata, languages and programming. pp. 299- 309 ,(1980) , 10.1007/3-540-10003-2_79
M. Sohel Rahman, Costas S. Iliopoulos, A New Efficient Algorithm for Computing the Longest Common Subsequence Algorithmic Aspects in Information and Management. pp. 82- 90 ,(2007) , 10.1007/978-3-540-72870-2_8
L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani, Streaming-data algorithms for high-quality clustering international conference on data engineering. pp. 685- 694 ,(2002) , 10.1109/ICDE.2002.994785
Teofilo F. Gonzalez, Clustering to minimize the maximum intercluster distance Theoretical Computer Science. ,vol. 38, pp. 293- 306 ,(1985) , 10.1016/0304-3975(85)90224-5
J.I. Munro, M.S. Paterson, Selection and sorting with limited storage Theoretical Computer Science. ,vol. 12, pp. 315- 323 ,(1980) , 10.1016/0304-3975(80)90061-4
Joan Feigenbaum, Sampath Kannan, Jian Zhang, Computing Diameter in the Streaming and Sliding-WindowModels Algorithmica. ,vol. 41, pp. 25- 41 ,(2005) , 10.1007/S00453-004-1105-2
Philippe Flajolet, G. Nigel Martin, Probabilistic counting algorithms for data base applications Journal of Computer and System Sciences. ,vol. 31, pp. 182- 209 ,(1985) , 10.1016/0022-0000(85)90041-8