Thermal-Conductivity Measurement of Thermoelectric Materials Using \(3{{\upomega }}\) Method

作者: O. Hahtela , M. Ruoho , E. Mykkänen , K. Ojasalo , J. Nissilä

DOI: 10.1007/S10765-015-1970-8

关键词: Resistive touchscreenKaptonDielectricAnalytical chemistryThermoelectric materialsMaterials scienceThermoelectric effectThermal conductivityMeasurement uncertaintyThermal conductivity measurement

摘要: In this work, a measurement system for high-temperature thermal-conductivity measurements has been designed, constructed, and characterized. The is based on the $$3{\upomega }$$ method which an ac technique suitable both bulk thin-film samples. were performed in horizontal three-zone tube furnace whose sample space can be evacuated to vacuum or alternatively protective argon gas environment applied prevent undesired oxidation contamination of material. was tested with several dielectric, semiconductor, metal samples from room temperature up 725 K. test materials chosen so that values covered wide range $$0.37\,\hbox {W}\!\cdot \! \hbox {m}^{-1}\!\cdot {K}^{-1}$$ $$150\,\hbox \!\hbox . An uncertainty analysis carried out. accuracy mainly limited by determination third harmonic voltage over resistive heater strip used heating sample. A typical relative between 5 % 8 % ( $$k=2$$ ). extension also implemented first deposited transferable Kapton foil. Utilizing such prefabricated sensor allows faster as there no need deposit each new

参考文章(19)
A Holtzman, E Shapira, Y Selzer, Bismuth nanowires with very low lattice thermal conductivity as revealed by the 3ω method Nanotechnology. ,vol. 23, pp. 495711- ,(2012) , 10.1088/0957-4484/23/49/495711
E. Yusibani, P. L. Woodfield, M. Fujii, K. Shinzato, X. Zhang, Y. Takata, Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas International Journal of Thermophysics. ,vol. 30, pp. 397- 415 ,(2009) , 10.1007/S10765-009-0563-9
J. Kimling, S. Martens, K. Nielsch, Thermal conductivity measurements using 1ω and 3ω methods revisited for voltage-driven setups Review of Scientific Instruments. ,vol. 82, pp. 074903- ,(2011) , 10.1063/1.3606441
Sébastian Gauthier, Alain Giani, Philippe Combette, Gas thermal conductivity measurement using the three-omega method Sensors and Actuators A-physical. ,vol. 195, pp. 50- 55 ,(2013) , 10.1016/J.SNA.2012.12.032
A. Jacquot, F. Vollmer, B. Bayer, M. Jaegle, D. G. Ebling, H. Böttner, Thermal Conductivity Measurements on Challenging Samples by the 3 Omega Method Journal of Electronic Materials. ,vol. 39, pp. 1621- 1626 ,(2010) , 10.1007/S11664-010-1265-6
David G. Cahill, M. Katiyar, J. R. Abelson, Thermal conductivity of a -Si:H thin films Physical Review B. ,vol. 50, pp. 6077- 6081 ,(1994) , 10.1103/PHYSREVB.50.6077
Feng Chen, Jason Shulman, Yuyi Xue, C. W. Chu, George S. Nolas, Thermal conductivity measurement under hydrostatic pressure using the 3ω method Review of Scientific Instruments. ,vol. 75, pp. 4578- 4584 ,(2004) , 10.1063/1.1805771
A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, J. Meusel, Numerical simulation of the 3ω method for measuring the thermal conductivity Journal of Applied Physics. ,vol. 91, pp. 4733- 4738 ,(2002) , 10.1063/1.1459611
Seung-Min Lee, Thermal conductivity measurement of fluids using the 3ω method Review of Scientific Instruments. ,vol. 80, pp. 024901- 024901 ,(2009) , 10.1063/1.3082036
David G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method Review of Scientific Instruments. ,vol. 61, pp. 802- 808 ,(1990) , 10.1063/1.1141498