Existence and Stability Results for Random Impulsive Fractional Pantograph Equations

作者: A. Anguraj , A. Vinodkumar , K. Malar

DOI: 10.2298/FIL1614839A

关键词: UniquenessDifferential systemsFixed-point theoremStability resultMathematicsMathematical analysisStability (probability)Linear growthPantograph

摘要: In this paper, we study the existence, uniqueness, stability through continuous dependence on initial conditions and Hyers-Ulam-Rassias stability  results for random impulsive fractional pantograph differential systems by relaxing linear growth conditions. Finally examples are given to illustrate applications of abstract results.

参考文章(9)
Stanislaw M. Ulam, A collection of mathematical problems ,(1960)
Tatsuyuki Kawakubo, Takashi Kobayashi, Satoshi Sakamoto, Drift motion of granules in chara cells induced by random impulses due to the myosin-actin interaction Physica A-statistical Mechanics and Its Applications. ,vol. 248, pp. 21- 27 ,(1998) , 10.1016/S0378-4371(97)00455-X
D. H. Hyers, On the Stability of the Linear Functional Equation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 27, pp. 222- 224 ,(1941) , 10.1073/PNAS.27.4.222
R. Iwankiewicz, S.R.K. Nielsen, Dynamic response of non-linear systems to poisson-distributed random impulses Journal of Sound and Vibration. ,vol. 156, pp. 407- 423 ,(1992) , 10.1016/0022-460X(92)90736-H
A. Anguraj, A. Vinodkumar, Existence, uniqueness and stability results of random impulsive semilinear differential systems Nonlinear Analysis: Hybrid Systems. ,vol. 4, pp. 475- 483 ,(2010) , 10.1016/J.NAHS.2009.11.004
The Dynamics of a Current Collection System for an Electric Locomotive Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 322, pp. 447- 468 ,(1971) , 10.1098/RSPA.1971.0078
Kaizhong Guan, Zhiwei Luo, Stability results for impulsive pantograph equations Applied Mathematics Letters. ,vol. 26, pp. 1169- 1174 ,(2013) , 10.1016/J.AML.2013.07.001
E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models Journal of Mathematical Analysis and Applications. ,vol. 325, pp. 542- 553 ,(2007) , 10.1016/J.JMAA.2006.01.087
K. BALACHANDRAN, S. KIRUTHIKA, J.J. TRUJILLO, EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS Acta Mathematica Scientia. ,vol. 33, pp. 712- 720 ,(2013) , 10.1016/S0252-9602(13)60032-6