Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.

作者: Frank F.J. Simonis , Esben T. Petersen , Lambertus W. Bartels , Jan J. W. Lagendijk , Cornelis A.T. van den Berg

DOI: 10.1002/MRM.25207

关键词: Temperature measurementOpticsMagnetic fieldStandard deviationRadio frequencyImaging phantomThermographyDielectric heatingMaterials scienceNuclear magnetic resonanceCompensation (engineering)

摘要: PURPOSE: MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used radio frequency (RF) safety monitoring. This application requires absolute temperature. In this study, multigradient-echo (mGE) MRT sequence was purpose. A drawback of sequence, however, its accuracy affected by background gradients. article, we present to minimize effect and improve measurements using MRI. THEORY: By determining gradients B0 map or combining data acquired with two opposing readout directions, the error removed in homogenous phantom, thus improving maps. METHODS: All scans were performed on 3T system ethylene glycol-filled phantoms. Background varied, one phantom uniformly heated validate both compensation approaches. Independent recordings made optical probes. RESULTS: Errors correlated closely all experiments. Temperature distributions showed much smaller standard deviation when corrections applied (0.21°C vs. 0.45°C) well thermo-optical CONCLUSION: The offer possibility measure RF heating phantoms more precisely. allows mGE become valuable tool assessment.

参考文章(24)
J J W Lagendijk, Hyperthermia treatment planning Physics in Medicine and Biology. ,vol. 45, pp. 119- 131 ,(2000) , 10.1088/0031-9155/45/5/201
Sara M. Sprinkhuizen, Chris J. G. Bakker, Johannes H. Ippel, Rolf Boelens, Max A. Viergever, Lambertus W. Bartels, Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. Magnetic Resonance Materials in Physics Biology and Medicine. ,vol. 25, pp. 33- 39 ,(2012) , 10.1007/S10334-011-0250-2
Pavel S. Yarmolenko, Eui Jung Moon, Chelsea Landon, Ashley Manzoor, Daryl W. Hochman, Benjamin L. Viglianti, Mark W. Dewhirst, Thresholds for thermal damage to normal tissues: An update International Journal of Hyperthermia. ,vol. 27, pp. 320- 343 ,(2011) , 10.3109/02656736.2010.534527
Baudouin Denis de Senneville, Charles Mougenot, Bruno Quesson, Iulius Dragonu, Nicolas Grenier, Chrit T. W. Moonen, MR thermometry for monitoring tumor ablation European Radiology. ,vol. 17, pp. 2401- 2410 ,(2007) , 10.1007/S00330-007-0646-6
Stephen A. Sapareto, William C. Dewey, Thermal dose determination in cancer therapy International Journal of Radiation Oncology Biology Physics. ,vol. 10, pp. 787- 800 ,(1984) , 10.1016/0360-3016(84)90379-1
Sukhoon Oh, Andrew G. Webb, Thomas Neuberger, BuSik Park, Christopher M. Collins, Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo. Magnetic Resonance in Medicine. ,vol. 63, pp. 218- 223 ,(2010) , 10.1002/MRM.22174
David S. Raiford, Cherie L. Fisk, Edwin D. Becker, Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers Analytical Chemistry. ,vol. 51, pp. 2050- 2051 ,(1979) , 10.1021/AC50048A040
Harvey Cline, Richard Mallozzi, Zhu Li, Graeme McKinnon, William Barber, Radiofrequency power deposition utilizing thermal imaging. Magnetic Resonance in Medicine. ,vol. 51, pp. 1129- 1137 ,(2004) , 10.1002/MRM.20064