An experimental-numerical study of active cooling in wire arc additive manufacturing

作者: William Hackenhaar , José A.E. Mazzaferro , Filippo Montevecchi , Gianni Campatelli

DOI: 10.1016/J.JMAPRO.2020.01.051

关键词: Materials scienceArc (geometry)Convective heat transferSubstrate (building)Internal energyGas metal arc weldingActive coolingComposite materialProcess simulationNatural convection

摘要: Abstract Wire arc additive manufacturing (WAAM) is a metal process based on gas welding and it known to be economically convenient for large parts with low complexity. The main issue WAAM the sensibility heat accumulation, i.e., progressive increase in internal energy of workpiece due high input deposition process, that responsible excessive remelting lower layers related change bead geometry. A promising technique mitigate such use an air jet impinging deposited material rate convective transfer. This paper presents analysis impingement performances by means hybrid numerical-experimental approach. Different samples are manufactured using AWS ER70S-6 as filler material, cooling approaches free convection impingement, different interlayer idle times. measurement substrate temperatures has been used validate simulation, obtaining temperature field whole part. results indicate significant impact limiting compared cooling. From arise optimal time 30 s, compromise between productivity reduction independently from strategy.

参考文章(35)
Andreas Lundbäck, Lars-Erik Lindgren, Modelling of metal deposition Finite Elements in Analysis and Design. ,vol. 47, pp. 1169- 1177 ,(2011) , 10.1016/J.FINEL.2011.05.005
R. J. Goldstein, M. E. Franchett, Heat transfer from a flat surface to an oblique impinging jet Journal of Heat Transfer-transactions of The Asme. ,vol. 110, pp. 84- 90 ,(1988) , 10.1115/1.3250477
M.R. Sridhar, M.M. Yovanovich, Thermal contact conductance of tool steel and comparison with model International Journal of Heat and Mass Transfer. ,vol. 39, pp. 831- 839 ,(1996) , 10.1016/0017-9310(95)00141-7
Tadhg S. O’Donovan, Darina B. Murray, Jet impingement heat transfer – Part I: Mean and root-mean-square heat transfer and velocity distributions International Journal of Heat and Mass Transfer. ,vol. 50, pp. 3291- 3301 ,(2007) , 10.1016/J.IJHEATMASSTRANSFER.2007.01.044
Hisataka Takagi, Takeyuki Abe, Peng Cui, Hiroyuki Sasahara, Mechanical Properties Evaluation of Metal Components Repaired by Direct Metal Lamination Key Engineering Materials. ,vol. 656-657, pp. 440- 445 ,(2015) , 10.4028/WWW.SCIENTIFIC.NET/KEM.656-657.440
J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding Materials Science and Engineering: A. ,vol. 676, pp. 395- 405 ,(2016) , 10.1016/J.MSEA.2016.09.015
Filippo Montevecchi, Giuseppe Venturini, Antonio Scippa, Gianni Campatelli, Finite Element Modelling of Wire-arc-additive-manufacturing Process Procedia CIRP. ,vol. 55, pp. 109- 114 ,(2016) , 10.1016/J.PROCIR.2016.08.024
A. Angelastro, S.L. Campanelli, G. Casalino, Statistical analysis and optimization of direct metal laser deposition of 227-F Colmonoy nickel alloy Optics and Laser Technology. ,vol. 94, pp. 138- 145 ,(2017) , 10.1016/J.OPTLASTEC.2017.03.027
Qianru Wu, Zhenshu Ma, Guangsen Chen, Changmeng Liu, Dongxi Ma, Shuyuan Ma, Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing Journal of Manufacturing Processes. ,vol. 27, pp. 198- 206 ,(2017) , 10.1016/J.JMAPRO.2017.05.004