Geometrical optics approach to the nematic liquid crystal grating: leading term formulas.

作者: H. M. Zenginoglou , J. A. Kosmopoulos

DOI: 10.1364/AO.28.003516

关键词: GratingComputationMonochromatic colorDiffractionDiffraction gratingOpticsGeometrical opticsLiquid crystalPhysicsLight beam

摘要: Leading term approximative analytical formulas are derived for the powers of fringes formed by a periodically distorted homogeneous nematic layer, illuminated monochromatic light beam at normal incidence. The agreement between predictions and those direct numerical computation odd-order is restricted to very small distortions and, thus, low fringe power values. On other hand, respective comparison even-order gives quite satisfactory results provided sample sufficiently thick order low.

参考文章(7)
P. Andrew Penz, Voltage-Induced Vorticity and Optical Focusing in Liquid Crystals Physical Review Letters. ,vol. 25, pp. 489- 489 ,(1970) , 10.1103/PHYSREVLETT.25.489
Sun Lu, Derick Jones, Light Diffraction Phenomena in an ac‐Excited Nematic Liquid‐Crystal Sample Journal of Applied Physics. ,vol. 42, pp. 2138- 2140 ,(1971) , 10.1063/1.1660504
W. Greubel, U. Wolff, Electrically Controllable Domains in Nematic Liquid Crystals Applied Physics Letters. ,vol. 19, pp. 213- 215 ,(1971) , 10.1063/1.1653890
R. A. Kashnow, J. E. Bigelow, Diffraction from a Liquid Crystal Phase Grating Applied Optics. ,vol. 12, pp. 2302- 2304 ,(1973) , 10.1364/AO.12.002302
Katsu Rokushima, Jiro Yamakita, Analysis of anisotropic dielectric gratings Journal of the Optical Society of America. ,vol. 73, pp. 901- 908 ,(1983) , 10.1364/JOSA.73.000901
J. A. Kosmopoulos, H. M. Zenginoglou, Geometrical optics approach to the nematic liquid crystal grating: numerical results Applied Optics. ,vol. 26, pp. 1714- 1721 ,(1987) , 10.1364/AO.26.001714
T. O. Carroll, Liquid‐Crystal Diffraction Grating Journal of Applied Physics. ,vol. 43, pp. 767- 770 ,(1972) , 10.1063/1.1661277