Reduced dynamics of coupled harmonic and anharmonic oscillators using higher-order perturbation theory.

作者: Markus Schröder , Michael Schreiber , Ulrich Kleinekathöfer

DOI: 10.1063/1.2538754

关键词: Harmonic (mathematics)Perturbation theoryTime evolutionDensity matrixPhysicsHarmonic oscillatorAnharmonicityAnsatzQuantum mechanicsEquations of motionStatistical physics

摘要: Several techniques to solve a hierarchical set of equations motion for propagating reduced density matrix coupled thermal bath have been developed in recent years. This is either done using the path integral technique as original proposal by Tanimura and Kubo [J. Phys. Soc. Jpn. 58, 101 (1998)] or use stochastic fields Yan et al. [Chem. Lett. 395, 216 (2004)]. Based on latter ansatz compact derivation hierarchy decomposition spectral function given present contribution. The method applied calculate time evolution describing harmonic, an anharmonic, two oscillators where each system bath. Calculations several orders system-bath coupling with different truncations are performed. respective matrices used various properties results compared discussed special focus convergence respect truncation scheme applied.

参考文章(42)
Ulrich Weiss, Quantum Dissipative Systems ,(1993)
Francesco Petruccione, Heinz-Peter Breuer, The Theory of Open Quantum Systems ,(2002)
Ulrich Kleinekathöfer, GuangQi Li, Michael Schreiber, Density matrix theory for reductive electron transfer in DNA Journal of Luminescence. ,vol. 119, pp. 91- 95 ,(2006) , 10.1016/J.JLUMIN.2005.12.042
Yoshitaka Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems Journal of the Physical Society of Japan. ,vol. 75, pp. 082001- ,(2006) , 10.1143/JPSJ.75.082001
Yoshitaka Tanimura, Peter G. Wolynes, Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath. Physical Review A. ,vol. 43, pp. 4131- 4142 ,(1991) , 10.1103/PHYSREVA.43.4131
Seogjoo Jang, Jianshu Cao, Robert J. Silbey, Fourth-order quantum master equation and its Markovian bath limit The Journal of Chemical Physics. ,vol. 116, pp. 2705- 2717 ,(2002) , 10.1063/1.1445105
H.-D. Meyer, U. Manthe, L.S. Cederbaum, The multi-configurational time-dependent Hartree approach Chemical Physics Letters. ,vol. 165, pp. 73- 78 ,(1990) , 10.1016/0009-2614(90)87014-I