Conformational Transitions that Enable Histidine Kinase Autophosphorylation and Receptor Array Integration.

作者: Anna R. Greenswag , Alise Muok , Xiaoxiao Li , Brian R. Crane

DOI: 10.1016/J.JMB.2015.10.015

关键词: AutophosphorylationProtein subunitBiophysicsTransmembrane proteinHistidine kinaseBiochemistryBiologyCooperativityThermotoga maritimaPhosphorylationChemotaxis

摘要: During bacterial chemotaxis, transmembrane chemoreceptor arrays regulate autophosphorylation of the dimeric histidine kinase CheA. The five domains CheA (P1-P5) each play a specific role in coupling receptor stimulation to activity. Biochemical and X-ray scattering studies thermostable from Thermotoga maritima determine that His-containing substrate domain (P1) is sequestered by interactions depend upon P1 adjacent subunit. Non-hydrolyzable ATP analogs (but not or ADP) release protein core (domains P3P4P5) increase its mobility. Detachment both removal one within dimer increases net substantially at physiological temperature (55°C). However, nearly all activity lost without dimerization (P3). linker length between P3 dictates intersubunit (trans) versus intrasubunit (cis) autophosphorylation, with trans reaction requiring minimum 47 residues. A new crystal structure most active dimerization-plus-kinase unit (P3P4) reveals directing tether connecting P2-P1 ATP-binding (P4) domain. orientation P4 relative P3P4 supports planar conformation required membrane array models, it suggests lid may be poised interact receptors proteins. Collectively, these data suggest are restrained off-state as result cross-subunit interactions. Perturbations nucleotide-binding pocket mobility access His P4-bound ATP.

参考文章(85)
Jens G. Nørby, Coupled assay of Na+,K+-ATPase activity. Methods in Enzymology. ,vol. 156, pp. 116- 119 ,(1988) , 10.1016/0076-6879(88)56014-7
Manasi P. Bhate, Kathleen S. Molnar, Mark Goulian, William F. DeGrado, Signal transduction in histidine kinases: insights from new structures. Structure. ,vol. 23, pp. 981- 994 ,(2015) , 10.1016/J.STR.2015.04.002
Randal B. Bass, Scott L. Butler, Stephen A. Chervitz, Susan L. Gloor, Joseph J. Falke, Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis. Methods in Enzymology. ,vol. 423, pp. 25- 51 ,(2007) , 10.1016/S0076-6879(07)23002-2
Zbyszek Otwinowski, Wladek Minor, Processing of X-ray diffraction data collected in oscillation mode Methods in Enzymology. ,vol. 276, pp. 307- 326 ,(1997) , 10.1016/S0076-6879(97)76066-X
Kyeong Kyu Kim, Hisao Yokota, Sung-Hou Kim, Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor Nature. ,vol. 400, pp. 787- 792 ,(1999) , 10.1038/23512
D D Ellefson, U Weber, A J Wolfe, Genetic analysis of the catalytic domain of the chemotaxis-associated histidine kinase CheA. Journal of Bacteriology. ,vol. 179, pp. 825- 830 ,(1997) , 10.1128/JB.179.3.825-830.1997
E.G. Ninfa, A. Stock, S. Mowbray, J. Stock, Reconstitution of the bacterial chemotaxis signal transduction system from purified components. Journal of Biological Chemistry. ,vol. 266, pp. 9764- 9770 ,(1991) , 10.1016/S0021-9258(18)92886-3
Masayori Inouye, Mitsuhiko Ikura, Chieri Tomomori, Toshiyuki Tanaka, Rinku Dutta, Heiyoung Park, Soumitra K. Saha, Yan Zhu, Rieko Ishima, Dingjiang Liu, Kit I. Tong, Hirofumi Kurokawa, Hong Qian, Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nature Structural & Molecular Biology. ,vol. 6, pp. 729- 734 ,(1999) , 10.1038/11495
Michael G. Surette, Mikhail Levit, Yi Liu, Gudrun Lukat, Elizabeth G. Ninfa, Alexander Ninfa, Jeffry B. Stock, Dimerization Is Required for the Activity of the Protein Histidine Kinase CheA That Mediates Signal Transduction in Bacterial Chemotaxis Journal of Biological Chemistry. ,vol. 271, pp. 939- 945 ,(1996) , 10.1074/JBC.271.2.939