The quadrupole collectivity and possible existence of macroscopic SU(3) symmetry in some collective shell model states

作者: K.H. Bhatt , J.C. Parikh , J.B. McGrory

DOI: 10.1016/0375-9474(74)90689-7

关键词: CouplingWave functionCondensed matter physicsPhysicsMultipole expansionNeutronProtonEigenfunctionSymmetry (physics)Quantum mechanicsQuadrupole

摘要: Abstract The shell model eigenfunctions for low-lying states of 56 Fe and 54 Cr are analyzed to illustrate that the “collective” these nuclei can be described as coupling a small number collective proton neutron groups. A truncation scheme doing calculations which would take advantage multipole collectivity is discussed. Finally, it suggested rotational features observed even in heavy deformed could consequence existence what might called an approximate “macroscopic” SU(3) symmetry.

参考文章(10)
K.T. Hecht, J.B. McGrory, J.P. Draayer, On the transition from shell structure to collective behavior Nuclear Physics A. ,vol. 197, pp. 369- 409 ,(1972) , 10.1016/0375-9474(72)91017-2
S. Cohen, R. D. Lawson, M. H. Macfarlane, S. P. Pandya, Michitoshi Soga, Shell Model of the Nickel Isotopes Physical Review. ,vol. 160, pp. 903- 915 ,(1967) , 10.1103/PHYSREV.160.903
K.H. Bhatt, J.C. Parikh, Intrinsic states in 58Ni, 42Ca, 30Si and 18O Nuclear Physics. ,vol. 98, pp. 113- 128 ,(1967) , 10.1016/0375-9474(67)90903-7
J. B. McGrory, Shell-Model Calculations forN=30Nuclei Physical Review. ,vol. 160, pp. 915- 924 ,(1967) , 10.1103/PHYSREV.160.915
J.D. Vergados, SU(3) ⊃ R(3) Wigner coefficients in the 2s-1d shell Nuclear Physics. ,vol. 111, pp. 681- 754 ,(1968) , 10.1016/0375-9474(68)90249-2
K. H. BHATT, J. B. BALL, J. C. PARIKH, Structure of Some Simple Shell-Model Wave Functions Physical Review. ,vol. 178, pp. 1632- 1646 ,(1969) , 10.1103/PHYSREV.178.1632
A. de-Shalit, CORE EXCITATIONS IN NONDEFORMED, ODD-A NUCLEI Physical Review. ,vol. 122, pp. 1530- 1536 ,(1961) , 10.1103/PHYSREV.122.1530
R. D. Lawson, PROPERTIES OF NUCLEI WITH NEUTRONS AND PROTONS IN THE 1f$sub 7$3/ SHELL Physical Review. ,vol. 124, pp. 1500- 1505 ,(1961) , 10.1103/PHYSREV.124.1500
Arnold Sommerfeld, Partial Differential Equations ,(1957)