Time series forecasting method of building energy consumption using support vector regression

作者: Dandan Liu , Qijun Chen , Kazuyuki Mori

DOI: 10.1109/ICINFA.2015.7279546

关键词: Energy consumptionBuilding energyNonlinear systemSupport vector machineData miningFocus (optics)Series (mathematics)Time seriesConsumption (economics)Engineering

摘要: … the forecast results reveal the trend of energy usage. Historical energy consumption data … are always applied to develop energy consumption forecasting models by using those methods…

参考文章(16)
Lukas G. Swan, V. Ismet Ugursal, Ian Beausoleil-Morrison, Occupant related household energy consumption in Canada: Estimation using a bottom-up neural-network technique Energy and Buildings. ,vol. 43, pp. 326- 337 ,(2011) , 10.1016/J.ENBUILD.2010.09.021
Betul Bektas Ekici, U. Teoman Aksoy, Prediction of building energy consumption by using artificial neural networks Advances in Engineering Software. ,vol. 40, pp. 356- 362 ,(2009) , 10.1016/J.ADVENGSOFT.2008.05.003
Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, Henry H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 903- 995 ,(1998) , 10.1098/RSPA.1998.0193
S.L. Wong, Kevin K.W. Wan, Tony N.T. Lam, Artificial neural networks for energy analysis of office buildings with daylighting Applied Energy. ,vol. 87, pp. 551- 557 ,(2010) , 10.1016/J.APENERGY.2009.06.028
Luca Ghelardoni, Alessandro Ghio, Davide Anguita, Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression IEEE Transactions on Smart Grid. ,vol. 4, pp. 549- 556 ,(2013) , 10.1109/TSG.2012.2235089
Alfonso Aranda, Germán Ferreira, M.D. Mainar-Toledo, Sabina Scarpellini, Eva Llera Sastresa, Multiple regression models to predict the annual energy consumption in the Spanish banking sector Energy and Buildings. ,vol. 49, pp. 380- 387 ,(2012) , 10.1016/J.ENBUILD.2012.02.040