Stochastic evolution equations driven by nuclear-space-valued martingales

作者: G. Kallianpur , V. Perez-Abreu

DOI: 10.1007/BF01448369

关键词: Pure mathematicsStochastic evolutionField (mathematics)Evolution equationStochastic processHilbert spaceBanach spaceMathematicsConvergence (routing)Nuclear space

摘要: This paper presents a theory of stochastic evolution equations for nuclear-space-valued processes and provides unified treatment several examples from the field applications. (C 0 , 1) reversed systems on countably Hilbertian nuclear spaces are also investigated.

参考文章(19)
H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms Springer Berlin Heidelberg. pp. 143- 303 ,(1984) , 10.1007/BFB0099433
Gopinath Kallianpur, Stochastic Filtering Theory ,(1980)
Itaru Mitoma, On the norm continuity of -valued Gaussian processes Nagoya Mathematical Journal. ,vol. 82, pp. 209- 220 ,(1981) , 10.1017/S0027763000019358
Hiroshi Tanaka, Masuyuki Hitsuda, Central limit theorem for a simple diffusion model of interacting particles Hiroshima Mathematical Journal. ,vol. 11, pp. 415- 423 ,(1981) , 10.32917/HMJ/1206134109
S. K. Christensen, G. Kallianpur, Stochastic differential equations for neuronal behavior Institute of Mathematical Statistics. pp. 400- 416 ,(1985) , 10.1214/LNMS/1215540315
V. A. Babalola, Semigroups of operators on locally convex spaces Transactions of the American Mathematical Society. ,vol. 199, pp. 163- 179 ,(1974) , 10.1090/S0002-9947-1974-0383142-8
Young Han Choe, C0-semigroups on a locally convex space Journal of Mathematical Analysis and Applications. ,vol. 106, pp. 293- 320 ,(1985) , 10.1016/0022-247X(85)90115-5