作者: T. M. Rocha Filho , A. Figueiredo , M A. Amato
DOI: 10.1103/PHYSREVLETT.95.190601
关键词: Maximum entropy thermodynamics 、 H-theorem 、 Entropy in thermodynamics and information theory 、 Joint quantum entropy 、 Statistical physics 、 Quantum relative entropy 、 Entropy (arrow of time) 、 Physics 、 Configuration entropy 、 Von Neumann entropy
摘要: We discuss the form of entropy for classical Hamiltonian systems with long-range interaction using Vlasov equation which describes dynamics a $N$ particle in limit $N\ensuremath{\rightarrow}\ensuremath{\infty}$. The stationary states system are subject to infinite conserved quantities due dynamics. show that correspond an extremum Boltzmann-Gibbs entropy, and their stability is obtained from condition this maximum. As consequence, function set Lagrange multipliers depend on initial condition. also context meaning ensemble inequivalence temperature.