Molecular excited states through a machine learning lens

作者: Pavlo O Dral , Mario Barbatti , None

DOI: 10.1038/S41570-021-00278-1

关键词: State (computer science)QuantumRange (mathematics)Theoretical methodsNew materialsMachine learningLens (optics)Artificial intelligenceOptoelectronic materialsComputer science

摘要: Theoretical simulations of electronic excitations and associated processes in molecules are indispensable for fundamental research and technological innovations. However, such …

参考文章(264)
C. D. Rankine, M. M. M. Madkhali, T. J. Penfold, A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra. Journal of Physical Chemistry A. ,vol. 124, pp. 4263- 4270 ,(2020) , 10.1021/ACS.JPCA.0C03723
B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. E. Yunker, M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ, R. H. Zhang, M. S. Elliott, T. H. Haley, D. J. Dvorak, A. Aspuru-Guzik, J. E. Hein, C. P. Berlinguette, Self-driving laboratory for accelerated discovery of thin-film materials. Science Advances. ,vol. 6, ,(2020) , 10.1126/SCIADV.AAZ8867
Mila Krämer, Philipp M. Dohmen, Weiwei Xie, Daniel Holub, Anders S. Christensen, Marcus Elstner, Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians. Journal of Chemical Theory and Computation. ,vol. 16, pp. 4061- 4070 ,(2020) , 10.1021/ACS.JCTC.0C00246
Zhi Li, Mansoor Ani Najeeb, Liana Alves, Alyssa Z. Sherman, Venkateswaran Shekar, Peter Cruz Parrilla, Ian M. Pendleton, Wesley Wang, Philip W. Nega, Matthias Zeller, Joshua Schrier, Alexander J. Norquist, Emory M. Chan, Robot-Accelerated Perovskite Investigation and Discovery Chemistry of Materials. ,vol. 32, pp. 5650- 5663 ,(2020) , 10.1021/ACS.CHEMMATER.0C01153
Balázs Kozma, Attila Tajti, Baptiste Demoulin, Róbert Izsák, Marcel Nooijen, Péter G. Szalay, A New Benchmark Set for Excitation Energy of Charge Transfer States: Systematic Investigation of Coupled Cluster Type Methods. Journal of Chemical Theory and Computation. ,vol. 16, pp. 4213- 4225 ,(2020) , 10.1021/ACS.JCTC.0C00154
Pavlo O. Dral, Quantum chemistry assisted by machine learning Academic Press. ,vol. 81, pp. 291- 324 ,(2020) , 10.1016/BS.AIQ.2020.05.002
Wen-Kai Chen, Yaolong Zhang, Bin Jiang, Wei-Hai Fang, Ganglong Cui, Efficient Construction of Excited-State Hessian Matrices with Machine Learning Accelerated Multilayer Energy-Based Fragment Method. Journal of Physical Chemistry A. ,vol. 124, pp. 5684- 5695 ,(2020) , 10.1021/ACS.JPCA.0C04117
Julia Westermayr, Philipp Marquetand, Machine learning and excited-state molecular dynamics Machine Learning: Science and Technology. ,vol. 1, pp. 043001- ,(2020) , 10.1088/2632-2153/AB9C3E