Schwarzschild and Kerr Solutions of Einstein's Field Equation -- an introduction

作者: Friedrich W. Hehl , Friedrich W. Hehl , Christian Heinicke

DOI: 10.1142/S0218271815300062

关键词: General relativitySchwarzschild geodesicsKerr metricReissner–Nordström metricSchwarzschild metricPhoton sphereKerr–Newman metricDeriving the Schwarzschild solutionPhysicsClassical mechanics

摘要: Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, Schwarzschild(–Droste) solution, and one specific stationary axially Kerr solution. The Schwarzschild is unique its metric can be interpreted as exterior mass. only if multipole moments mass angular momentum take on prescribed values. Its suitably rotating distribution. Both solutions describe objects exhibiting an event horizon, frontier no return. corresponding notion black hole explained to some extent. Eventually, present generalizations

参考文章(105)
Computer algebra handbook Springer-Verlag New York, Inc.. ,(2003) , 10.1007/978-3-642-55826-9
Christian Heinicke, The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space arXiv: General Relativity and Quantum Cosmology. ,(2000) , 10.1023/A:1010236517022
José Socorro, Friedrich W. Hehl, Alfredo Macías, Computer algebra in gravity: Reduce-Excalc programs for (non-) Riemannian space-times. I Computer Physics Communications. ,vol. 115, pp. 264- 283 ,(1998) , 10.1016/S0010-4655(98)00133-7
A. Z. Petrov, The Classification of Spaces Defining Gravitational Fields General Relativity and Gravitation. ,vol. 32, pp. 1665- 1685 ,(2000) , 10.1023/A:1001910908054
Wei-Tou Ni, Rotation, the equivalence principle, and the Gravity Probe B experiment. Physical Review Letters. ,vol. 107, pp. 051103- ,(2011) , 10.1103/PHYSREVLETT.107.051103
D. Brill, History of a black hole horizon Gravitation & Cosmology. ,vol. 20, pp. 165- 170 ,(2014) , 10.1134/S0202289314030050
Masoud Allahverdizadeh, Jutta Kunz, Francisco Navarro-Lérida, None, Charged Rotating Black Holes in Higher Dimensions Journal of Physics: Conference Series. ,vol. 314, pp. 012109- ,(2011) , 10.1088/1742-6596/314/1/012109
Robert H. Boyer, Richard W. Lindquist, Maximal Analytic Extension of the Kerr Metric Journal of Mathematical Physics. ,vol. 8, pp. 265- 281 ,(1967) , 10.1063/1.1705193