A conjectured scenario for order-parameter fluctuations in spin glasses

作者: Felix Ritort , Marta Sales

DOI: 10.1088/0305-4470/33/37/304

关键词: MathematicsLimit (mathematics)Finite volume methodStatistical physicsSpin glassCouplingRandom fieldPhase transitionQuantum mechanicsSpinsGround state

摘要: We study order-parameter fluctuations (OPF) in disordered systems by considering the behaviour of some recently introduced parameters G,Gc which have proven very useful locating phase transitions. prove that both G (for disconnected overlap disorder averages) and Gc connected take respective universal values (1/3) (13/31) T→0 limit for any finite volume provided ground state is unique there no gap ground-state local-field distributions, conditions are met generic spin-glass models with continuous couplings at zero coupling. This makes ideal to locate transitions much like Binder cumulant ordered systems. check our results exactly computing OPF a simple example uncoupled spins presence random fields one-dimensional Ising spin glass. At temperatures, we discuss under value may be recovered conjecturing different scenarios depending on whether or vanish infinite-volume limit. In particular, replica equivalence its natural consequence lim V→∞G(V,T) = when finite. As an model where does not give information about Sherrington-Kirkpatrick spherical performing numerical simulations small sizes. Again find compatible phase.

参考文章(23)
C De Dominicis, A P Young, Weighted averages and order parameters for the infinite range Ising spin glass Journal of Physics A. ,vol. 16, pp. 2063- 2075 ,(1983) , 10.1088/0305-4470/16/9/028
Federico Ricci-Tersenghi, Giorgio Parisi, Francesco Zuliani, Juan J. Ruiz-Lorenzo, Enzo Marinari, Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical Foundations and Numerical Evidences Journal of Statistical Physics. ,vol. 98, pp. 973- 1074 ,(2000) , 10.1023/A:1018607809852
A. P. Young, Matteo Palassini, Reply to Comment on "Nature of Spin Glass State" arXiv: Disordered Systems and Neural Networks. ,(2000)
G Parisi, F Ritort, F Slanina, Several results on the finite-size corrections in the Sherrington- Kirkpatrick spin-glass model Journal of Physics A. ,vol. 26, pp. 3775- 3789 ,(1993) , 10.1088/0305-4470/26/15/026
M. Mezard, G. Parisi, M. A. Virasoro, David J. Thouless, Spin Glass Theory and Beyond ,(1986)
G Parisi, The order parameter for spin glasses: a function on the interval 0-1 Journal of Physics A. ,vol. 13, pp. 1101- 1112 ,(1980) , 10.1088/0305-4470/13/3/042
K. Binder, A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions Reviews of Modern Physics. ,vol. 58, pp. 801- 976 ,(1986) , 10.1103/REVMODPHYS.58.801
J. M. Kosterlitz, D. J. Thouless, Raymund C. Jones, Spherical Model of a Spin-Glass Physical Review Letters. ,vol. 36, pp. 1217- 1220 ,(1976) , 10.1103/PHYSREVLETT.36.1217
A J Bray, M A Moore, Finite size effects in spin glass overlap functions Journal of Physics A. ,vol. 18, ,(1985) , 10.1088/0305-4470/18/11/010
M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M. Virasoro, Replica symmetry breaking and the nature of the spin glass phase Journal de Physique. ,vol. 45, pp. 843- 854 ,(1984) , 10.1051/JPHYS:01984004505084300