On the defining relations of the affine Lie superalgebras and their quantized universal enveloping superalgebras

作者: Hiroyuki Yamane

DOI:

关键词: Lie superalgebraCasimir elementAffine transformationAffine representationQuantum affine algebraUniversal enveloping algebraMathematicsAlgebra

摘要: In this paper, we give defining relations of the affine Lie superalgebras an and a super-version Drinfeld[D]-Jimbo[J] quantized universal enveloping algebras. As result, can exactly define with generators relations. Moreover Drinfeld's realizations $U_h({\hat {sl}}(m|n)^{(1)})$.

参考文章(6)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
John W. Milnor, John C. Moore, On the Structure of Hopf Algebras The Annals of Mathematics. ,vol. 81, pp. 211- ,(1965) , 10.2307/1970615
Hiroyuki Yamane, A Serre type theorem for affine Lie superalgebras and their quantized enveloping superalgebras Proceedings of the Japan Academy, Series A, Mathematical Sciences. ,vol. 70, pp. 31- 36 ,(1994) , 10.3792/PJAA.70.31
L. Frappat, A. Sciarrino, P. Sorba, Structure of Basic Lie Superalgebras and of their Affine Extensions Communications in Mathematical Physics. ,vol. 121, pp. 457- 500 ,(1989) , 10.1007/BF01217734
Michio Jimbo, A q -difference analogue of U(g) and the Yang-Baxter equation Letters in Mathematical Physics. ,vol. 10, pp. 63- 69 ,(1985) , 10.1007/BF00704588
Christian Kassel, Quantum Groups ,(1994)