Localized spectrum slicing

作者: Lin Lin

DOI:

关键词: Eigenvalues and eigenvectorsSpectrum (functional analysis)MathematicsMatrix (mathematics)Pure mathematicsAlgebraReal numberLinear algebraHermitian matrixOperator (physics)Block matrix

摘要: Given a sparse Hermitian matrix $A$ and real number $\mu$, we construct set of vectors, each approximately spanned only by eigenvectors corresponding to eigenvalues near $\mu$. This vectors spans the column space localized spectrum slicing (LSS) operator, is called an LSS basis set. The sparsity related decay properties Gaussian functions. We present divide-and-conquer strategy with controllable error purely algebraic process using submatrices $A$, can therefore be applied general matrices. leads projected matrices reduced sizes, which allows problems solved efficiently techniques linear algebra. As example, demonstrate that used solve interior eigenvalue for discretized second order partial differential operator in one-dimensional two-dimensional domains, as well pattern.

参考文章(24)
Michele Benzi, Nader Razouk, DECAY BOUNDS AND ( ) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES ETNA. Electronic Transactions on Numerical Analysis [electronic only]. ,vol. 28, pp. 16- 39 ,(2007)
Michele Benzi, Gene H. Golub, Bounds for the Entries of Matrix Functions with Applications to Preconditioning Bit Numerical Mathematics. ,vol. 39, pp. 417- 438 ,(1999) , 10.1023/A:1022362401426
Stephen Demko, Inverses of Band Matrices and Local Convergence of Spline Projections SIAM Journal on Numerical Analysis. ,vol. 14, pp. 616- 619 ,(1977) , 10.1137/0714041
Hong Zhang, Barry Smith, Michael Sternberg, Peter Zapol, SIPs: Shift-and-invert parallel spectral transformations ACM Transactions on Mathematical Software. ,vol. 33, pp. 9- ,(2007) , 10.1145/1236463.1236464
W. W. Bradbury, R. Fletcher, New iterative methods for solution of the eigenproblem Numerische Mathematik. ,vol. 9, pp. 259- 267 ,(1966) , 10.1007/BF02162089
Eric Polizzi, Density-Matrix-Based Algorithm for Solving Eigenvalue Problems Physical Review B. ,vol. 79, pp. 115112- ,(2009) , 10.1103/PHYSREVB.79.115112
Lin Lin, Jianfeng Lu, Lexing Ying, Weinan E, Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation Journal of Computational Physics. ,vol. 231, pp. 2140- 2154 ,(2012) , 10.1016/J.JCP.2011.11.032
Andrew V. Knyazev, New estimates for Ritz vectors Mathematics of Computation. ,vol. 66, pp. 985- 995 ,(1997) , 10.1090/S0025-5718-97-00855-7