作者: Isil Dillig , Swarat Chaudhuri , Abhinav Verma , Greg Anderson
DOI:
关键词: Reinforcement learning 、 Space (commercial competition) 、 Artificial neural network 、 Class (computer programming) 、 LOOP (programming language) 、 Computer science 、 Key (cryptography) 、 Action (philosophy) 、 State (computer science) 、 Artificial intelligence
摘要: We present REVEL, a partially neural reinforcement learning (RL) framework for provably safe exploration in continuous state and action spaces. A key challenge for provably safe …