An evaluative study on ESO and SIMP for optimising a cantilever tie—beam

作者: C. S. Edwards , H. A. Kim , C. J. Budd

DOI: 10.1007/S00158-007-0102-X

关键词: Design domainEngineeringMechanical engineeringCantileverStructural engineeringEngineering design processBeam (structure)IsotropyControl and Systems EngineeringSoftwareControl and OptimizationComputer Graphics and Computer-Aided DesignComputer Science Applications

摘要: We examine both the evolutionary structural optimisation (ESO) and solid isotropic microstructure with penalisation (SIMP) methodologies by investigating a cantilever tie–beam. Initially, ESO SIMP produce designs higher objective function values relative to previously published ‘intuitive’ design. However, after careful investigation of numerical parameters such as initial design domain mesh size, methods obtain that have lower intuitive Thus, clearer understanding parame- ters their influence on is achieved.

参考文章(19)
Y.M. Xie, Grant P. Steven, Evolutionary Structural Optimization ,(1997)
J.M. Mart�nez, A note on the theoretical convergence properties of the SIMP method Structural and Multidisciplinary Optimization. ,vol. 29, pp. 319- 323 ,(2005) , 10.1007/S00158-004-0479-8
Martin P. Bendsøe, Ole Sigmund, Topology Optimization: Theory, Methods, and Applications ,(2011)
G. I. N. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization Structural Optimization. ,vol. 4, pp. 250- 252 ,(1992) , 10.1007/BF01742754
A. Rietz, Sufficiency of a finite exponent in SIMP (power law) methods Structural and Multidisciplinary Optimization. ,vol. 21, pp. 159- 163 ,(2001) , 10.1007/S001580050180
Alejandro Diaz, Ole Sigmund, Checkerboard patterns in layout optimization Structural Optimization. ,vol. 10, pp. 40- 45 ,(1995) , 10.1007/BF01743693
R. B. Haber, C. S. Jog, M. P. Bends�e, A new Approach to Variable-Topology Shape Design Using a Constraint on the Perimeter Structural Optimization. ,vol. 11, pp. 1- 12 ,(1996) , 10.1007/BF01279647
H Kim, OM Querin, GP Steven, YM Xie, None, A method for varying the number of cavities in an optimized topology using Evolutionary Structural Optimization Structural and Multidisciplinary Optimization. ,vol. 19, pp. 140- 147 ,(2000) , 10.1007/S001580050094
Krister Svanberg, The method of moving asymptotes—a new method for structural optimization International Journal for Numerical Methods in Engineering. ,vol. 24, pp. 359- 373 ,(1987) , 10.1002/NME.1620240207
Pasi Tanskanen, The evolutionary structural optimization method: theoretical aspects Computer Methods in Applied Mechanics and Engineering. ,vol. 191, pp. 5485- 5498 ,(2002) , 10.1016/S0045-7825(02)00464-4