Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts

作者: Khac Duc Do , Jie Pan

DOI: 10.1016/S0167-6911(02)00133-0

关键词: Control theoryScalingConstant (mathematics)BacksteppingMathematicsStrict-feedback formControl theoryNonlinear systemMagnitude (mathematics)Nonholonomic system

摘要: A new input-to-state scaling scheme is first introduced to transform a class of nonholonomic systems in chained form with strong nonlinear drifts and unknown constant parameters into strict feedback form. The backstepping technique then applied design global adaptive stabilization controller. switching strategy based on the control input magnitude rather than time derived get around phenomenon uncontrollability. Simulation examples validate effectiveness proposed

参考文章(24)
Richard M. Murray, Zexiang Li, S. Shankar Sastry, Nonholonomic Motion Planning Nonholonomic Motion Planning. ,vol. 38, pp. 355- 394 ,(1992) , 10.1201/9781315136370-8
R. Colbaugh, E. Barany, K. Glass, Adaptive control of nonholonomic mechanical systems conference on decision and control. ,vol. 2, pp. 1428- 1434 ,(1996) , 10.1109/CDC.1996.572713
K.Y. Pettersen, O. Egeland, Exponential stabilization of an underactuated surface vessel conference on decision and control. ,vol. 1, pp. 967- 972 ,(1996) , 10.1109/CDC.1996.574602
D.G. Wilson, I.I.I. Robinett, Robust adaptive backstepping control for a nonholonomic mobile robot systems man and cybernetics. ,vol. 5, pp. 3241- 3245 ,(2001) , 10.1109/ICSMC.2001.972018
Z.P. Jiang, J.-B. Pomet, Backstepping-based adaptive controllers for uncertain nonholonomic systems conference on decision and control. ,vol. 2, pp. 1573- 1578 ,(1995) , 10.1109/CDC.1995.480362
R. W. Brockett, Asymptotic stability and feedback stabilization Differential geometric control theory. ,vol. 27, pp. 181- 191 ,(1983)
Zhong-Ping Jiang, Iterative design of time-varying stabilizers for multi-input systems in chained form Systems & Control Letters. ,vol. 28, pp. 255- 262 ,(1996) , 10.1016/0167-6911(96)00029-1
E.D. Sontag, Smooth stabilization implies coprime factorization IEEE Transactions on Automatic Control. ,vol. 34, pp. 435- 443 ,(1989) , 10.1109/9.28018