A framework for imprecise robust one-class classification models

作者: Lev V. Utkin

DOI: 10.1007/S13042-012-0140-6

关键词: Empirical distribution functionExtreme pointMathematical optimizationFinite setSet (abstract data type)MathematicsOne-class classificationData pointMinimaxProbability distribution

摘要: A framework for constructing robust one-class classification models is proposed in the paper. It based on Walley’s imprecise extensions of contaminated which produce a set probability distributions data points instead single empirical distribution. The minimax and minimin strategies are used to choose an optimal distribution from construct separating functions. shown that algorithm computing parameters determined by extreme reduced finite number standard SVM tasks with weighted points. Important special cases models, including pari-mutuel, constant odd-ratio, Kolmogorov–Smirnov bounds studied. Experimental results synthetic real illustrate models.

参考文章(46)
Andrea Cerioli, Marco Riani, Anthony C. Atkinson, Robust classification with categorical variables Physica-Verlag HD. pp. 507- 519 ,(2006) , 10.1007/978-3-7908-1709-6_41
Lev V Utkin, FRANK PA COOLEN, On Reliability Growth Models Using Kolmogorov-Smirnov Bounds International journal of performability engineering. ,vol. 7, pp. 5- ,(2011)
Dale Schuurmans, Koby Crammer, Linli Xu, Robust support vector machine training via convex outlier ablation national conference on artificial intelligence. pp. 536- 542 ,(2006)
Filip M. Mulier, Vladimir Cherkassky, Learning from Data: Concepts, Theory, and Methods John Wiley & Sons, Inc.. ,(1998)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Larry Wasserman, All of Nonparametric Statistics ,(2008)
Shehroz S. Khan, Michael G. Madden, A survey of recent trends in one class classification AICS'09 Proceedings of the 20th Irish conference on Artificial intelligence and cognitive science. pp. 188- 197 ,(2009) , 10.1007/978-3-642-17080-5_21
XULEI YANG, QING SONG, YUE WANG, A WEIGHTED SUPPORT VECTOR MACHINE FOR DATA CLASSIFICATION International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 21, pp. 961- 976 ,(2007) , 10.1142/S0218001407005703
David M.J. Tax, Robert P.W. Duin, Support Vector Data Description Machine Learning. ,vol. 54, pp. 45- 66 ,(2004) , 10.1023/B:MACH.0000008084.60811.49