Robust visual tracking via online informative feature selection

作者: Huihui Song

DOI: 10.1049/EL.2014.1911

关键词: Dimensionality reductionArtificial intelligenceFeature vectorComputer visionVideo trackingFeature selectionEye trackingEntropy (information theory)Curse of dimensionalityMathematicsPattern recognitionFeature extraction

摘要: An efficient and effective algorithm which online exploits informative features for visual tracking is presented. First, a high-dimensional multi-scale spatio-colour image feature vector developed, takes into account both appearance spatial layout information; secondly, this randomly projected onto low-dimensional space, where its projections preserve intrinsic information of the but effectively avoid curse dimensionality; finally, an selection technique to design adaptive model proposed, explores most from via maximising entropy energy. Experiments on extensive challenging sequences demonstrate superiority proposed method over some state-of-the-art algorithms.

参考文章(10)
Wei Zhong, Huchuan Lu, Ming-Hsuan Yang, Robust object tracking via sparsity-based collaborative model computer vision and pattern recognition. pp. 1838- 1845 ,(2012) , 10.1109/CVPR.2012.6247882
Junseok Kwon, Kyoung Mu Lee, Visual tracking decomposition computer vision and pattern recognition. pp. 1269- 1276 ,(2010) , 10.1109/CVPR.2010.5539821
Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming Cheng, Stephen L Hicks, Philip HS Torr, Struck: Structured output tracking with kernels international conference on computer vision. pp. 263- 270 ,(2011) , 10.1109/ICCV.2011.6126251
B. Babenko, Ming-Hsuan Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance Learning IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 33, pp. 1619- 1632 ,(2011) , 10.1109/TPAMI.2010.226
Xue Mei, Haibin Ling, Robust Visual Tracking and Vehicle Classification via Sparse Representation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 33, pp. 2259- 2272 ,(2011) , 10.1109/TPAMI.2011.66
D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 25, pp. 564- 575 ,(2003) , 10.1109/TPAMI.2003.1195991
Zdenek Kalal, Jiri Matas, Krystian Mikolajczyk, P-N learning: Bootstrapping binary classifiers by structural constraints computer vision and pattern recognition. pp. 49- 56 ,(2010) , 10.1109/CVPR.2010.5540231
Tianzhu Zhang, B. Ghanem, Si Liu, N. Ahuja, Robust visual tracking via multi-task sparse learning computer vision and pattern recognition. pp. 2042- 2049 ,(2012) , 10.1109/CVPR.2012.6247908
Xu Jia, Huchuan Lu, Ming-Hsuan Yang, Visual tracking via adaptive structural local sparse appearance model computer vision and pattern recognition. pp. 1822- 1829 ,(2012) , 10.1109/CVPR.2012.6247880
Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang, Real-Time Compressive Tracking Computer Vision – ECCV 2012. pp. 864- 877 ,(2012) , 10.1007/978-3-642-33712-3_62