Multiple Outliers Detection Procedures in Linear Regression

作者: Robiah Adnan , Mohd Nor Mohamad , Halim Setan

DOI: 10.11113/MATEMATIKA.V19.N.502

关键词: MathematicsStatisticsOutlierLinear regression

摘要: Kertas kerja ini menghuraikan satu prosedur untuk mengenalpasti gandaan data terpenncil dalam regresi linear. Prosedur menggunakan kaedah penyesuan teguh iaitu kuasa dua trim terkecil dan berkelompok pautann tunggal mengecam terpencil yang mungkin. Kemudian, diagnostik kes berganda digunakan terpencil. Prestasi dibandingkan dengan Serbert. Simulasi Monte Carlo terbaik semua keadaan linear. Katakunci: berganda; linear; penyesuain teguh; terkecil; pautan tunggal. This paper describes a procedure for identifying multiple outliers in linear regression. This uses robust fit which is the least of trimmed squares (LTS) and single linkage clustering method to obtain potential outliers. Then multiple-case diagnostics are used from these The performance this also compared Serbert's method. simulations determining performed best all regression scenarios. Keywords: Multiple outliers, regression, fit, Least squares, linkage. Keywords: outliers; regression; fit; squares; linkage.

参考文章(12)
Glenn W. Milligan, Martha C. Cooper, An examination of procedures for determining the number of clusters in a data set Psychometrika. ,vol. 50, pp. 159- 179 ,(1985) , 10.1007/BF02294245
R. Mojena, Hierarchical grouping methods and stopping rules: an evaluation The Computer Journal. ,vol. 20, pp. 359- 363 ,(1977) , 10.1093/COMJNL/20.4.359
David L. Woodruff, David M. Rocke, Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators Journal of the American Statistical Association. ,vol. 89, pp. 888- 896 ,(1994) , 10.1080/01621459.1994.10476821
David M Sebert, Douglas C Montgomery, Dwayne A Rollier, None, A clustering algorithm for identifying multiple outliers in linear regression Computational Statistics & Data Analysis. ,vol. 27, pp. 461- 484 ,(1998) , 10.1016/S0167-9473(98)00021-8
Dauid F. Percy, Cluster Analysis (3rd Edition) Journal of the Operational Research Society. ,vol. 45, pp. 845- 846 ,(1994) , 10.1057/JORS.1994.128
D. W. Wichern, R. A. Johnson, Applied Multivariate Statistical Analysis ,(1982)
R. Dennis Cook, Influential Observations in Linear Regression Journal of the American Statistical Association. ,vol. 74, pp. 169- 174 ,(1979) , 10.1080/01621459.1979.10481634