Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract).

作者: Jack Snoeyink , John Hershberger

DOI:

关键词: Homotopy lifting propertyPure mathematicsDiscrete mathematicsHomotopyRegular homotopyMathematicsn-connectedHomotopy class

摘要:

参考文章(16)
G.T Toussaint, Computing geodesic properties inside a simple polygon Revue d'intelligence artificielle. ,vol. 3, pp. 9- 42 ,(1989)
Godfried T. Toussaint, Movable Separability of Sets Machine Intelligence and Pattern Recognition. ,vol. 2, pp. 335- 375 ,(1985) , 10.1016/B978-0-444-87806-9.50018-9
John William Scott Cassels, An Introduction to the Geometry of Numbers ,(1959)
James R. Munkres, Topology; a first course ,(1974)
B. Chazelle, Triangulating a simple polygon in linear time foundations of computer science. pp. 220- 230 ,(1990) , 10.1109/FSCS.1990.89541
Subir Kumar Ghosh, Computing the visibility polygon from a convex set and related problems Journal of Algorithms. ,vol. 12, pp. 75- 95 ,(1991) , 10.1016/0196-6774(91)90024-S
G. Toussaint, On separating two simple polygons by a single translation Discrete & Computational Geometry. ,vol. 4, pp. 265- 278 ,(1989) , 10.1007/BF02187729
C E Leiserson, F M Maley, Algorithms for routing and testing routability of planar VLSI layouts Proceedings of the seventeenth annual ACM symposium on Theory of computing - STOC '85. pp. 69- 78 ,(1985) , 10.1145/22145.22153
Subhash Suri, A linear time algorithm with minimum link paths inside a simple polygon Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing. ,vol. 35, pp. 99- 110 ,(1986) , 10.1016/0734-189X(86)90127-1
S. Kapoor, S. N. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles symposium on computational geometry. pp. 172- 182 ,(1988) , 10.1145/73393.73411