Alternating diffusion for common manifold learning with application to sleep stage assessment

作者: Roy R. Lederman , Ronen Talmon , Hau-tieng Wu , Yu-Lun Lo , Ronald R. Coifman

DOI: 10.1109/ICASSP.2015.7179075

关键词: Nonlinear dimensionality reductionSensitivity (control systems)Sleep (system call)ManifoldSeries (mathematics)Machine learningArtificial intelligencePattern recognitionKernel (linear algebra)Stage (hydrology)Computer scienceDiffusion (acoustics)Signal processing

摘要: In this paper, we address the problem of multimodal signal processing and present a manifold learning method to extract common source variability from multiple measurements. This is based on alternating-diffusion particularly adapted time series. We show that extracted sensors as if it were only variability, by standard single sensor, without influence sensor-specific variables. addition, application sleep stage assessment. demonstrate that, indeed, through alternating-diffusion, information hidden inside respiratory signals can be better captured compared single-modal methods.

参考文章(31)
Byron Boots, Geoffrey J. Gordon, Two-Manifold Problems with Applications to Nonlinear System Identification international conference on machine learning. pp. 33- 40 ,(2012)
Amit Singer, Ronald R. Coifman, Non-linear independent component analysis with diffusion maps Applied and Computational Harmonic Analysis. ,vol. 25, pp. 226- 239 ,(2008) , 10.1016/J.ACHA.2007.11.001
Gih Sung Chung, Byoung Hoon Choi, Ko Keun Kim, Yong Gyu Lim, Jin Wook Choi, Do-Un Jeong, Kwang Suk Park, REM Sleep Classification with Respiration Rates 2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine. pp. 194- 197 ,(2007) , 10.1109/ITAB.2007.4407379
R. Talmon, R. R. Coifman, Empirical intrinsic geometry for nonlinear modeling and time series filtering Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 12535- 12540 ,(2013) , 10.1073/PNAS.1307298110
Stéphane Mallat, Group Invariant Scattering Communications on Pure and Applied Mathematics. ,vol. 65, pp. 1331- 1398 ,(2012) , 10.1002/CPA.21413
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 7426- 7431 ,(2005) , 10.1073/PNAS.0500334102
Bo Wang, Jiayan Jiang, Wei Wang, Zhi-Hua Zhou, Zhuowen Tu, Unsupervised metric fusion by cross diffusion computer vision and pattern recognition. pp. 2997- 3004 ,(2012) , 10.1109/CVPR.2012.6248029
Yu-Chun Chen, Ming-Yen Cheng, Hau-Tieng Wu, Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 76, pp. 651- 682 ,(2014) , 10.1111/RSSB.12039
Ronen Talmon, Ronald R. Coifman, Intrinsic modeling of stochastic dynamical systems using empirical geometry Applied and Computational Harmonic Analysis. ,vol. 39, pp. 138- 160 ,(2015) , 10.1016/J.ACHA.2014.08.006