Control of Mammalian Cell and Bacteria Adhesion on Substrates Micropatterned with Poly(ethylene glycol) Hydrogels

作者: Won-Gun Koh , Alexander Revzin , Aleksandr Simonian , Tony Reeves , Michael Pishko

DOI: 10.1023/A:1024455114745

关键词: ResistChemical engineeringMethacrylateSubstrate (chemistry)Ethylene glycolMaterials sciencePEG ratioMonolayerAdhesionSelf-healing hydrogelsNanotechnology

摘要: A simple method for controlling the spatial positioning of mammalian cells and bacteria on substrates using patterned poly(ethylene glycol) (PEG) hydrogel microstructures is described. These were fabricated photolithography silicon, glass or poly (dimethylsiloxane) (PDMS) surfaces modified with a 3-(trichlorosilyl) propyl methacrylate (TPM) monolayer. During photogelation reaction, resulting covalently bound to substrate via TPM monolayer did not detached from upon hydration. For cell patterning, microwell arrays different dimensions fabricated. microwells composed hydrophilic PEG walls surrounding hydrophobic floors inside microwells. Murine 3T3 fibroblasts transformed hepatocytes shown selectively adhere microwells, maintaining their viability, while adherent present walls. The number one could be controled by changing lateral dimension thus allowing only single per if desired. In case 30×30 μm as many 400 in 1 mm2. addition, also effectively resist adhesion such Escherichia coli.

参考文章(45)
Emanuele Ostuni, Christopher S. Chen, Donald E. Ingber, George M. Whitesides, Selective Deposition of Proteins and Cells in Arrays of Microwells Langmuir. ,vol. 17, pp. 2828- 2834 ,(2001) , 10.1021/LA001372O
Lars Hauer Larsen, Thomas Kjær, Niels Peter Revsbech, A Microscale NO(3)(-) Biosensor for Environmental Applications. Analytical Chemistry. ,vol. 69, pp. 3527- 3531 ,(1997) , 10.1021/AC9700890
J.-L. Dewez, J.-B. Lhoest, E. Detrait, V. Berger, C.C. Dupont-Gillain, L.-M. Vincent, Y.-J. Schneider, P. Bertrand, P.G. Rouxhet, Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials. ,vol. 19, pp. 1441- 1445 ,(1998) , 10.1016/S0142-9612(98)00055-6
Y Ito, Surface micropatterning to regulate cell functions Biomaterials. ,vol. 20, pp. 2333- 2342 ,(1999) , 10.1016/S0142-9612(99)00162-3
Mary Lee Amirpour, Pradyut Ghosh, William M. Lackowski, Richard M. Crooks, Michael V. Pishko, Mammalian cell cultures on micropatterned surfaces of weak-acid, polyelectrolyte hyperbranched thin films on gold Analytical Chemistry. ,vol. 73, pp. 1560- 1566 ,(2001) , 10.1021/AC000907F
D. R. Jung, R. Kapur, T. Adams, K. A. Giuliano, M. Mrksich, H. G. Craighead, D. L. Taylor, Topographical and physicochemical modification of material surface to enable patterning of living cells. Critical Reviews in Biotechnology. ,vol. 21, pp. 111- 154 ,(2001) , 10.1080/20013891081700
R Singhvi, A Kumar, G. Lopez, G. Stephanopoulos, D. Wang, G. Whitesides, D. Ingber, Engineering Cell Shape and Function. Science. ,vol. 264, pp. 696- 698 ,(1994) , 10.1126/SCIENCE.8171320
Miqin Zhang, Tejal Desai, Mauro Ferrari, Proteins and cells on PEG immobilized silicon surfaces Biomaterials. ,vol. 19, pp. 953- 960 ,(1998) , 10.1016/S0142-9612(98)00026-X
Carson H. Thomas, Clive D. McFarland, Michelle L. Jenkins, Alireza Rezania, Jack G. Steele, Kevin E. Healy, The role of vitronectin in the attachment and spatial distribution of bone-derived cells on materials with patterned surface chemistry Journal of Biomedical Materials Research. ,vol. 37, pp. 81- 93 ,(1997) , 10.1002/(SICI)1097-4636(199710)37:1<81::AID-JBM10>3.0.CO;2-T