Barycentric coordinates for polytopes

作者: Eugene L. Wachspress

DOI: 10.1016/J.CAMWA.2011.04.032

关键词: Barycentric coordinate systemPolytopeCombinatoricsMathematicsGeneralizationSimple (abstract algebra)Mathematical analysisPolyhedronSpace (mathematics)Basis functionRegular polygon

摘要: In Wachspress (1975) [1], theory was developed for constructing rational basis functions convex polygons and polyhedra. These barycentric coordinates were positive within the elements. Generalization to higher space dimensions is described here. The GADJ algorithm by Dasgupta (2003) [5] in (2008) [6] crucial simple construction of functions.

参考文章(7)
Joe Warren, Barycentric Coordinates for Convex Polytopes Advances in Computational Mathematics. ,vol. 6, pp. 97- 108 ,(1996) , 10.1007/BF02127699
E. Wachspress, Rational bases for convex polyhedra Computers & Mathematics with Applications. ,vol. 59, pp. 1953- 1956 ,(2010) , 10.1016/J.CAMWA.2009.11.013
Joe Warren, Scott Schaefer, Anil N. Hirani, Mathieu Desbrun, Barycentric coordinates for convex sets Advances in Computational Mathematics. ,vol. 27, pp. 319- 338 ,(2007) , 10.1007/S10444-005-9008-6
G. Dasgupta, E. Wachspress, The adjoint for an algebraic finite element Computers & Mathematics With Applications. ,vol. 55, pp. 1988- 1997 ,(2008) , 10.1016/J.CAMWA.2004.03.021
Gautam Dasgupta, Interpolants within Convex Polygons: Wachspress’ Shape Functions Journal of Aerospace Engineering. ,vol. 16, pp. 1- 8 ,(2003) , 10.1061/(ASCE)0893-1321(2003)16:1(1)
Eugene L. Wachspress, S. M. Rohde, A Rational Finite Element Basis ,(2012)
G. M. Petersen, H. S. M. Coxeter, Introduction to Geometry. The American Mathematical Monthly. ,vol. 68, pp. 1016- ,(1961) , 10.2307/2311833