The efficient determination of the percolation threshold by a frontier-generating walk in a gradient

作者: R M Ziff , B Sapoval

DOI: 10.1088/0305-4470/19/18/010

关键词: Statistical physicsRandom walkLattice (order)Percolation thresholdSquare latticeMonte Carlo methodMaximum efficiencyMathematics

摘要: The frontier in gradient percolation is generated directly by a type of self-avoiding random walk. existence the permits one to generate an infinite walk on computer finite memory. From this walk, threshold pc for two-dimensional lattice can be determined with apparently maximum efficiency naive Monte Carlo calculation (+or-N-12/). For square lattice, value pc=0.592745+or-0.000002 found simulation N=2.6*1011 total steps (occupied and blocked perimeter sites). power method verified Kagome site case.

参考文章(19)
R. J. Elliott, B. R. Heap, D. J. Morgan, G. S. Rushbrooke, Equivalence of the Critical Concentrations in the Ising and Heisenberg Models of Ferromagnetism Physical Review Letters. ,vol. 5, pp. 366- 367 ,(1960) , 10.1103/PHYSREVLETT.5.366
C. Domb, M. F. Sykes, Cluster Size in Random Mixtures and Percolation Processes Physical Review. ,vol. 122, pp. 77- 78 ,(1961) , 10.1103/PHYSREV.122.77
J. Roussenq, J. Clerc, G. Giraud, E. Guyon, H. Ottavi, Size dependence of the percolation threshold of square and triangular network Journal De Physique Lettres. ,vol. 37, pp. 99- 101 ,(1976) , 10.1051/JPHYSLET:0197600370509900
T Gebele, Site percolation threshold for square lattice Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/2/005
M F Sykes, D S Gaunt, M Glen, Percolation processes in two dimensions. II. Critical concentrations and the mean size index Journal of Physics A. ,vol. 9, pp. 97- 100 ,(1976) , 10.1088/0305-4470/9/1/015
Peter Reynolds, H. Stanley, W. Klein, Large-cell Monte Carlo renormalization group for percolation Physical Review B. ,vol. 21, pp. 1223- 1245 ,(1980) , 10.1103/PHYSREVB.21.1223
M. Rosso, J. F. Gouyet, B. Sapoval, Determination of percolation probability from the use of a concentration gradient. Physical Review B. ,vol. 32, pp. 6053- 6054 ,(1985) , 10.1103/PHYSREVB.32.6053
Robert M. Ziff, Test of scaling exponents for percolation-cluster perimeters. Physical Review Letters. ,vol. 56, pp. 545- 548 ,(1986) , 10.1103/PHYSREVLETT.56.545