作者: Yang Zhang , Guangshun Shi , Kai Wang
关键词: Statistical classification 、 Speech recognition 、 Computer science 、 Kernel (linear algebra) 、 Pattern recognition 、 Contextual image classification 、 Support vector machine 、 Artificial intelligence 、 Test data 、 Hidden Markov model 、 Handwriting recognition 、 Classifier (UML)
摘要: This paper presents a novel double-stage classifier for handwritten chemical symbols recognition task. The first stage is rough classification, SVM method used to distinguish non-ring structure (NRS) and organic ring (ORS) symbols, while HMM fine at second stage. A point-sequence-reordering algorithm proposed improve the accuracy of ORS symbols. Our test data set contains 101 9090 training samples 3232 samples. Finally, we obtained top-1 93.10% top-3 98.08% based on set.