Bayesian Error Propagation for a Kinetic Model of n-Propylbenzene Oxidation in a Shock Tube

作者: Sebastian Mosbach , Je Hyeong Hong , George P. E. Brownbridge , Markus Kraft , Soumya Gudiyella

DOI: 10.1002/KIN.20855

关键词: Propagation of uncertaintyChemistryNormal distributionStatistical physicsSobol sequenceBayesian probabilityNewton's methodMarkov chain Monte CarloShock tubePosterior probability

摘要: We apply a Bayesian parameter estimation technique to chemical kinetic mechanism for n-propylbenzene oxidation in shock tube propagate errors experimental data Arrhenius parameters and predicted species concentrations. find that, the methodology successfully, conventional optimization is required as preliminary step. This carried out two stages: First, quasi-random global search using Sobol low-discrepancy sequence conducted, followed by local means of hybrid gradient-descent/Newton iteration method. The concentrations 37 at variety temperatures, pressures, equivalence ratios are optimized against total 2378 observations. then study influence uncertainties measurements on some model well Markov chain Monte Carlo algorithms employed sample from posterior probability densities, making use polynomial surrogates higher order fitted responses. conclude that provides useful tool analysis distributions responses, particular their correlations. Limitations method discussed. For example, we second-order response surfaces assuming normal propagated largely adequate, but not always.

参考文章(76)
Tam�s Tur�nyi, Sensitivity analysis of complex kinetic systems. Tools and applications Journal of Mathematical Chemistry. ,vol. 5, pp. 203- 248 ,(1990) , 10.1007/BF01166355
I. M. Sobol’, On the Systematic Search in a Hypercube SIAM Journal on Numerical Analysis. ,vol. 16, pp. 790- 793 ,(1979) , 10.1137/0716058
Alison S. Tomlin, The role of sensitivity and uncertainty analysis in combustion modelling Proceedings of the Combustion Institute. ,vol. 34, pp. 159- 176 ,(2013) , 10.1016/J.PROCI.2012.07.043
G. E. P. BOX, N. R. DRAPER, The Bayesian estimation of common parameters from several responses Biometrika. ,vol. 52, pp. 355- 365 ,(1965) , 10.1093/BIOMET/52.3-4.355
Xiaoqing You, Andrew Packard, Michael Frenklach, Process informatics tools for predictive modeling: Hydrogen combustion International Journal of Chemical Kinetics. ,vol. 44, pp. 101- 116 ,(2012) , 10.1002/KIN.20627
Marc C. Kennedy, Anthony O'Hagan, Bayesian Calibration of computer models Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 63, pp. 425- 464 ,(2001) , 10.1111/1467-9868.00294
Alison. S. Tomlin, The use of global uncertainty methods for the evaluation of combustion mechanisms Reliability Engineering & System Safety. ,vol. 91, pp. 1219- 1231 ,(2006) , 10.1016/J.RESS.2005.11.026
J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. K. Law, D. G. Friend, C. A. Hergart, R. M. McDavid, A. K. Patel, Charles J. Mueller, H. Pitsch, Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels 45th AIAA Aerospace Sciences Meeting and Exhibit. ,(2007) , 10.4271/2007-01-0201
Ryan Feeley, Michael Frenklach, Matt Onsum, Trent Russi, Adam Arkin, Andrew Packard, None, Model Discrimination Using Data Collaboration Journal of Physical Chemistry A. ,vol. 110, pp. 6803- 6813 ,(2006) , 10.1021/JP056309S
Alison S. Tomlin, Tamás Turányi, Michael J. Pilling, Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms Comprehensive Chemical Kinetics. ,vol. 35, pp. 293- 437 ,(1997) , 10.1016/S0069-8040(97)80019-2