Multidimensional bound optical polaron revisited

作者: Ashok Chatterjee

DOI: 10.1016/0003-4916(90)90228-G

关键词: PolaronVariational methodQuantum mechanicsVariational principleHamiltonian (quantum mechanics)ScalingPath integral formulationPhysicsGround stateCanonical transformation

摘要: Abstract The multidimensional bound optical polaron problem is studied using various approximation schemes viz. the Lee, Low, Pines canonical transformation method and its modified versions as developed by Gross Huybrechts, Landau-Pekar variational method, Feynman-Haken path integral formalism. Simple scaling relations are obtained for ground state energy total number of virtual phonons around electron effect dimensionality on phenomena discussed.

参考文章(50)
J. G. Bednorz, K. A. M�ller, Possible high Tc superconductivity in the Ba-La-Cu-O system European Physical Journal B. ,vol. 64, pp. 189- 193 ,(1986) , 10.1007/BF01303701
T. Holstein, Studies of polaron motion Annals of Physics. ,vol. 8, pp. 343- 389 ,(1959) , 10.1016/0003-4916(59)90003-X
P. M. Platzman, GROUND-STATE ENERGY OF BOUND POLARONS Physical Review. ,vol. 125, pp. 1961- 1965 ,(1962) , 10.1103/PHYSREV.125.1961
T Holstein, Studies of polaron motion Annals of Physics. ,vol. 8, pp. 325- 342 ,(1959) , 10.1016/0003-4916(59)90002-8
X. Sun, L. Chen, E.X. Yu, Vibrational mode of polaron in trans-(CH)x Solid State Communications. ,vol. 53, pp. 973- 974 ,(1985) , 10.1016/0038-1098(85)90471-5
M. H. Hawton, V. V. Paranjape, Dispersion self-energy of an electron in a dielectric Physical Review B. ,vol. 18, pp. 7163- 7164 ,(1978) , 10.1103/PHYSREVB.18.7163
K. J. Donovan, P. D. Freeman, E. G. Wilson, Acoustic Solitary Wave Polaron Motion In Polydiacetylene Crystals Molecular Crystals and Liquid Crystals. ,vol. 118, pp. 395- 401 ,(1985) , 10.1080/00268948508076246
D. R. Jennison, David Emin, Localization of surface excitations and stimulated desorption Journal of Vacuum Science and Technology. ,vol. 1, pp. 1154- 1156 ,(1983) , 10.1116/1.571883