Navigability of Random Geometric Graphs in the Universe and Other Spacetimes

作者: William Cunningham , Konstantin Zuev , Dmitri Krioukov

DOI: 10.1038/S41598-017-08872-4

关键词: Theoretical physicsMathematicsCausal structureNavigabilitySpacetimeDark energyDe Sitter universeBasis (linear algebra)Degree (graph theory)Cosmology

摘要: Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values exponents power-law degree distributions observed networks. In that respect, random asymptotically de Sitter spacetimes, such as Lorentzian spacetime our accelerating universe, are more attractive their predictions consistent with observations Yet another important property is navigability, it remains unclear if navigable ones. Here we study navigability three manifolds corresponding universes filled only dark energy (de spacetime), matter, a mixture matter. We find these energy. This result implies that, terms spacetimes good graphs. It also establishes connection between presence discretized causal structure spacetime, which provides basis for different approach problem cosmology.

参考文章(75)
Jean-Claude Hausmann, On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces Princeton University Press. pp. 175- 188 ,(1996) , 10.1515/9781400882588-013
Zheng Xie, Jiang Zhu, Dexing Kong, Jianping Li, A random geometric graph built on a time-varying Riemannian manifold Physica A-statistical Mechanics and Its Applications. ,vol. 436, pp. 492- 498 ,(2015) , 10.1016/J.PHYSA.2015.05.076
Mathew Penrose, Random Geometric Graphs ,(2003)
James A. Roberts, Alistair Perry, Anton R. Lord, Gloria Roberts, Philip B. Mitchell, Robert E. Smith, Fernando Calamante, Michael Breakspear, The contribution of geometry to the human connectome NeuroImage. ,vol. 124, pp. 379- 393 ,(2016) , 10.1016/J.NEUROIMAGE.2015.09.009
Tobias Friedrich, Anton Krohmer, Cliques in hyperbolic random graphs 2015 IEEE Conference on Computer Communications (INFOCOM). pp. 1544- 1552 ,(2015) , 10.1109/INFOCOM.2015.7218533
James R. Clough, Tim S. Evans, What is the Dimension of Citation Space Physica A-statistical Mechanics and Its Applications. ,vol. 448, pp. 235- 247 ,(2016) , 10.1016/J.PHYSA.2015.12.053
Jon M. Kleinberg, Navigation in a small world Nature. ,vol. 406, pp. 845- 845 ,(2000) , 10.1038/35022643
Ginestra Bianconi, Christoph Rahmede, Zhihao Wu, Complex quantum network geometries: Evolution and phase transitions Physical Review E. ,vol. 92, pp. 022815- 022815 ,(2015) , 10.1103/PHYSREVE.92.022815
Ronen Eldan, Sébastien Bubeck, Miklós Rácz, Jian Ding, Testing for high-dimensional geometry in random graphs arXiv: Statistics Theory. ,(2014)