作者: Tormod Næs , Harald Martens
DOI: 10.1016/0165-9936(84)80044-8
关键词: Linear prediction 、 Outlier 、 Data compression 、 Calibration (statistics) 、 Multivariate analysis 、 Artificial intelligence 、 Analytical chemistry 、 Pattern recognition 、 Principal component regression 、 Univariate 、 Regression
摘要: Abstract In this outline of new approaches to multivariate calibration in chemistry the following topics are treated: Advantages over conventional univariate calibration: detect and eliminate selectivity problems. Multivariate methods based on selection some variables vs. data compression all variables. Direct indirect pure constituents or known samples for calibration? Calibration by physical modelling: Beer's law. Use law controlled natural generalized least-squares fit best linear predictor. Extending handle unknown factor principal component regression partial regression. Methods detecting abnormal (outliers). Pre-treatments linearize data.