Multivariate calibration. II. Chemometric methods

作者: Tormod Næs , Harald Martens

DOI: 10.1016/0165-9936(84)80044-8

关键词: Linear predictionOutlierData compressionCalibration (statistics)Multivariate analysisArtificial intelligenceAnalytical chemistryPattern recognitionPrincipal component regressionUnivariateRegression

摘要: Abstract In this outline of new approaches to multivariate calibration in chemistry the following topics are treated: Advantages over conventional univariate calibration: detect and eliminate selectivity problems. Multivariate methods based on selection some variables vs. data compression all variables. Direct indirect pure constituents or known samples for calibration? Calibration by physical modelling: Beer's law. Use law controlled natural generalized least-squares fit best linear predictor. Extending handle unknown factor principal component regression partial regression. Methods detecting abnormal (outliers). Pre-treatments linearize data.

参考文章(2)
Jose Ferreira de Carvalho, N. R. Draper, H. Smith, Applied regression analysis 2nd ed. Journal of the American Statistical Association. ,vol. 76, pp. 1012- ,(1981) , 10.2307/2287608
Harald Martens, Tormod Næs, Multivariate calibration. I. Concepts and distinctions Trends in Analytical Chemistry. ,vol. 3, pp. 204- 210 ,(1984) , 10.1016/0165-9936(84)85008-6