Modularity of Sparse Random Graphs

作者: J. Reichardt

DOI: 10.1007/978-3-540-87833-9_6

关键词: Cavity methodDegree distributionRandom graphDiscrete mathematicsComputer scienceModularity (networks)

摘要:

参考文章(32)
Gergely Palla, Imre Derényi, Illés Farkas, Tamás Vicsek, Uncovering the overlapping community structure of complex networks in nature and society Nature. ,vol. 435, pp. 814- 818 ,(2005) , 10.1038/NATURE03607
Leon Danon, Albert Díaz-Guilera, Jordi Duch, Alex Arenas, Comparing community structure identification arXiv: Disordered Systems and Neural Networks. ,(2005) , 10.1088/1742-5468/2005/09/P09008
Andreas Engel, Christian P. L. Van den Broeck, Statistical Mechanics of Learning Statistical Mechanics of Learning. pp. 342- 342 ,(2001)
Alexander K Hartmann, Heiko Rieger, None, New Optimization Algorithms in Physics Wiley-VCH. ,(2004)
Marc Mézard, Giorgio Parisi, The cavity method at zero temperature Journal of Statistical Physics. ,vol. 111, pp. 1- 34 ,(2003) , 10.1023/A:1022221005097
A. Engel, C. Van den Broeck, Statistical Mechanics of Learning The handbook of brain theory and neural networks. pp. 925- 929 ,(2001) , 10.1017/CBO9781139164542
R. Mulet, A. Pagnani, M. Weigt, R. Zecchina, Coloring random graphs. Physical Review Letters. ,vol. 89, pp. 268701- 268701 ,(2002) , 10.1103/PHYSREVLETT.89.268701
F. Y. Wu, The Potts model Reviews of Modern Physics. ,vol. 54, pp. 235- 268 ,(1982) , 10.1103/REVMODPHYS.54.235
Wuwell Liao, Graph bipartitioning problem. Physical Review Letters. ,vol. 59, pp. 1625- 1628 ,(1987) , 10.1103/PHYSREVLETT.59.1625