Computing uncertainties in ionosphere‐airglow models: I. Electron flux and species production uncertainties for Mars

作者: Guillaume Gronoff , Cyril Simon Wedlund , Christopher J. Mertens , Robert J. Lillis

DOI: 10.1029/2011JA016930

关键词: Atmosphere of MarsSpectrometerSatellitePhysical modelAeronomyIonosphereAirglowPhysicsRemote sensingMars Exploration ProgramComputational physics

摘要: [1] The ionization and excitation of atoms molecules in the upper atmospheres Earth planets are computed by a number physical models. From these calculations, quantities measurable dedicated satellite experiments such as airglow electron fluxes can be derived. It is then possible to compare model observation derive more fundamental properties atmospheres, for example, density function altitude. To ensure accuracy retrieval techniques, it important have an estimation uncertainty models ways account uncertainties. The complexity kinetic computing secondary production excited state species (including ions) makes difficult evaluation, studies usually neglect or underestimate it. We present here Monte-Carlo approach computation As we studied several aspects uncertainties atmosphere Mars, including flux main ion species. Our simulations show importance improving solar models, especially on energy binning photon impact cross sections, which sources dayside. risk modifying sections basis aeronomical observations highlighted case while accurate shown crucial interpretation data from particle detectors onboard Mars Global Surveyor. Finally, shows AtMoCiad, public database evaluation aeronomy section A detailed study resulting emissions focus forthcoming paper (Gronoff et al., 2012) outputs discussed used compute uncertainty, overall result compared with SPICAM UV spectrometer Express.

参考文章(51)
Thomas N. Woods, Scott M. Bailey, W. K. Peterson, Stanley C. Solomon, Harry P. Warren, Francis G. Eparvier, Howard Garcia, Charles W. Carlson, James P. McFadden, Solar extreme ultraviolet variability of the X‐class flare on 21 April 2002 and the terrestrial photoelectron response Space Weather-the International Journal of Research and Applications. ,vol. 1, pp. 1001- ,(2003) , 10.1029/2003SW000010
G. Gronoff, J. Lilensten, R. Modolo, Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines Astronomy and Astrophysics. ,vol. 506, pp. 965- 970 ,(2009) , 10.1051/0004-6361/200912125
Marsha R. Torr, D. G. Torr, Ionization frequencies for solar cycle 21: Revised Journal of Geophysical Research. ,vol. 90, pp. 6675- 6678 ,(1985) , 10.1029/JA090IA07P06675
R. S. Stolarski, Analytic approach to photoelectron transport Journal of Geophysical Research. ,vol. 77, pp. 2862- 2870 ,(1972) , 10.1029/JA077I016P02862
P V Johnson, J W McConkey, S S Tayal, I Kanik, Collisions of Electrons with Atomic Oxygen: Current Status Canadian Journal of Physics. ,vol. 83, pp. 589- 616 ,(2005) , 10.1139/P05-034
R. R. Meier, Ultraviolet spectroscopy and remote sensing of the upper atmosphere Space Science Reviews. ,vol. 58, pp. 1- 185 ,(1991) , 10.1007/BF01206000
R. C. Whitten, L. Colin, The ionospheres of Mars and Venus Reviews of Geophysics. ,vol. 12, pp. 155- 192 ,(1974) , 10.1029/RG012I002P00155
R. W. Schunk, Andrew F. Nagy, Electron temperatures in theFregion of the ionosphere: Theory and observations Reviews of Geophysics. ,vol. 16, pp. 355- 399 ,(1978) , 10.1029/RG016I003P00355