Differentiation of gastric schwannomas from gastrointestinal stromal tumors by CT using machine learning

作者: Jian Wang , Zongyu Xie , Xiandi Zhu , Zhongfeng Niu , Hongli Ji

DOI: 10.1007/S00261-020-02797-9

关键词: Multivariate analysisMachine learningStromal cellArtificial intelligenceHepatologyLymphSchwannomaCt attenuationMedicineInternal medicineLogistic regressionUnivariate analysis

摘要: OBJECTIVE To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Tree (GBDT). METHODS This study enrolled 49 patients with 139 GISTs proven pathology. P < 0.1 derived univariate analysis were inputted to four models. Five machine learning (ML) versions, multivariate analysis, radiologists' subjective diagnostic performance compared evaluate diagnosis performance of all the traditional advanced methods. RESULTS The as follows: (1) attenuation value unenhancement phase (CTU), (2) portal venous enhancement (CTV), (3) degree in (DEPP), (4) minus arterial (CTV-CTA), (5) enhanced potentiality (EP), (6) location, (7) contour, (8) growth pattern, (9) necrosis, (10) surface ulceration, (11) enlarged lymph node (LN). LR (M1), RF, DT, GBDT models contained above 11 variables, while (M2) was developed six most predictive variables (M1). model AUC 0.967 test dataset thought be optimal differentiating two tumors. Location gastric body, exophytic mixed lack necrosis nodes, larger EP important suggestive schwannomas. CONCLUSION provided potency among other ML on differentiation GISTs.

参考文章(26)
Dragoumis D, Atmatzidis S, Tsiaousis P, Atmatzidis K, Patsas A, Chatzimavroudis G, Gastric schwannoma: a case report and literature review. Hippokratia. ,vol. 16, pp. 280- 282 ,(2012)
Joseph A. Cruz, David S. Wishart, Applications of Machine Learning in Cancer Prediction and Prognosis Cancer Informatics. ,vol. 2, pp. 59- 77 ,(2006) , 10.1177/117693510600200030
Apurva S. Shah, Pravin M. Rathi, Vaibhav S. Somani, Astha M. Mulani, Gastric Schwannoma: A Benign Tumor Often Misdiagnosed as Gastrointestinal Stromal Tumor. Clinics and practice. ,vol. 5, pp. 775- 775 ,(2015) , 10.4081/CP.2015.775
Angela D. Levy, Helen E. Remotti, William M. Thompson, Leslie H. Sobin, Markku Miettinen, Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics. ,vol. 23, pp. 283- 304 ,(2003) , 10.1148/RG.232025146
Heikki Joensuu, Sunitinib for imatinib-resistant GIST The Lancet. ,vol. 368, pp. 1303- 1304 ,(2006) , 10.1016/S0140-6736(06)69489-0
Bengt Nilsson, Per Bümming, Jeanne M. Meis-Kindblom, Anders Odén, Aydin Dortok, Bengt Gustavsson, Katarzyna Sablinska, Lars-Gunnar Kindblom, Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era--a population-based study in western Sweden. Cancer. ,vol. 103, pp. 821- 829 ,(2005) , 10.1002/CNCR.20862
M. SARLOMO-RIKALA, M. MIETTINEN, Gastric schwannoma—a clinicopathological analysis of six cases Histopathology. ,vol. 27, pp. 355- 360 ,(1995) , 10.1111/J.1365-2559.1995.TB01526.X
Janine Kalkmann, Martin Zeile, Gerald Antoch, Frank Berger, Stefan Diederich, Dietmar Dinter, Christian Fink, Rolf Jank, Jorg Stattaus, Consensus report on the radiological management of patients with gastrointestinal stromal tumours (GIST): recommendations of the German GIST Imaging Working Group Cancer Imaging. ,vol. 12, pp. 126- 135 ,(2012) , 10.1102/1470-7330.2012.0013
Markku Miettinen, Maarit Sarlomo-Rikala, Jerzy Lasota, Gastrointestinal stromal tumors: recent advances in understanding of their biology. Human Pathology. ,vol. 30, pp. 1213- 1220 ,(1999) , 10.1016/S0046-8177(99)90040-0
Markku Miettinen, Mourad Majidi, Jerzy Lasota, Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review European Journal of Cancer. ,vol. 38, ,(2002) , 10.1016/S0959-8049(02)80602-5