An elementary proof of the Macdonald identities for A(1)l

作者: S.C Milne

DOI: 10.1016/0001-8708(85)90105-7

关键词: Pure mathematicsHypergeometric identityGeneralizationBasic hypergeometric seriesElementary proofIdentity (mathematics)Generalized hypergeometric functionMacdonald identitiesMathematicsSeries (mathematics)

摘要: Abstract In this paper it is shown that the Macdonald identities for A(1)l are a natural consequence of recent multivariable generalization classical basic hypergeometric series known as in U(n). More precisely, U(n) multiple q-binomial theorem derived and used to generalize Cauchy's elegant proof Jacobi's triple product identity give direct, elementary A(1)l.

参考文章(55)
J. Lepowsky, Affine Lie algebras and combinatorial identities Springer, Berlin, Heidelberg. pp. 130- 156 ,(1982) , 10.1007/BFB0093358
Paul Appell, Joseph Kampé de Fériet, Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite Gauthier-Villars et Cie.. ,(1926)
L. C. Biedenharn, R. A. Gustafson, M. A. Lohe, J. D. Louck, S. C. Milne, Special Functions and Group Theory in Theoretical Physics Special Functions: Group Theoretical Aspects and Applications. pp. 129- 162 ,(1984) , 10.1007/978-94-010-9787-1_3
Lawrence Christian Biedenharn, James D Louck, The Racah-Wigner algebra in quantum theory ,(1981)
George E. Andrews, Problems and Prospects for Basic Hypergeometric Functions Theory and Application of Special Functions#R##N#Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, the University of Wisconsin–Madison, March 31–April 2, 1975. pp. 191- 224 ,(1975) , 10.1016/B978-0-12-064850-4.50008-2
Carl Gustav Jakob Jacobi, Fundamenta nova theoriae functionum ellipticarum ,(1829)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Thomas John Ianson Bromwich, An introduction to the theory of infinite series ,(1931)