Analytic Torsion for Complex Manifolds

作者: D. B. Ray , I. M. Singer

DOI: 10.2307/1970909

关键词: Ricci-flat manifoldHermitian manifoldMathematicsStein manifoldComplex manifoldComplex torusAnalytic torsionPure mathematicsMathematical analysisInvariant manifold

摘要:

参考文章(8)
R. C. Gunning, Lectures on Riemann Surfaces ,(1966)
Carl Ludwig Siegel, S. Raghavan, Lectures on advanced analytic number theory Tata Institute of Fundamental Research. ,(1961)
Shiing-shen Chern, Shiing-shen Chern, Shiing-shen Chern, Shiing-shen Chern, Complex manifolds without potential theory ,(1979)
H. P. McKean, Selberg's trace formula as applied to a compact riemann surface Communications on Pure and Applied Mathematics. ,vol. 25, pp. 225- 246 ,(1972) , 10.1002/CPA.3160250302
A. N. Milgram, P. C. Rosenbloom, Harmonic Forms and Heat Conduction: I: Closed Riemannian Manifolds. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 37, pp. 180- 184 ,(1951) , 10.1073/PNAS.37.3.180
D.B. Ray, I.M. Singer, R-Torsion and the Laplacian on Riemannian manifolds Advances in Mathematics. ,vol. 7, pp. 145- 210 ,(1971) , 10.1016/0001-8708(71)90045-4
S. Minakshisundaram, Å. Pleijel, Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds Canadian Journal of Mathematics. ,vol. 1, pp. 242- 256 ,(1949) , 10.4153/CJM-1949-021-5