作者: Alán Aspuru-Guzik , Xavier Andrade , Jacob N. Sanders
DOI:
关键词: Bottleneck 、 Sampling (statistics) 、 Compressed sensing 、 Computational chemistry 、 Matrix (mathematics) 、 Molecular vibration 、 Bootstrapping (statistics) 、 Computation 、 Computer science 、 Scaling 、 Algorithm
摘要: This article presents a new method to compute matrices from numerical simulations based on the ideas of sparse sampling and compressed sensing. The is useful for problems where determination entries matrix constitutes computational bottleneck. We apply this an important problem in chemistry: molecular vibrations electronic structure calculations, our results show that overall scaling procedure can be improved some cases. Moreover, provides general framework bootstrapping cheap low-accuracy calculations order reduce required number expensive high-accuracy resulting significant 3x speed-up actual calculations.