Absolutely continuous constrained maximizers

作者: T. Rader

DOI: 10.1007/BF00934812

关键词: Differentiable functionMathematical economicsAbsolute continuityLipschitz continuityPointwiseTheory of computationMaximizationMathematicsNull setAlmost everywhere

摘要: The modern theory of differentiable demand functions is generalized to maximizers in a constrained maximization problem. Sufficient conditions are given for almost everywhere differentiability the constraining capacities or other parameters. Also, sufficient very useful condition (N). Finally, somewhat stronger pointwise Lipschitz property shown. Applications analogous those economic indicated.

参考文章(15)
Herbert Federer, Geometric Measure Theory ,(1969)
Trout Rader, Resource Allocation with Increasing Returns to Scale The American Economic Review. ,vol. 60, pp. 814- 825 ,(1970)
Gerard Debreu, Gerard Debreu, Werner Hildenbrand, Mathematical Economics: Continuity properties of Paretian utility International Economic Review. ,vol. 5, pp. 163- 172 ,(1964) , 10.1017/CCOL052123736X.013
J. P. Evans, F. J. Gould, Stability in Nonlinear Programming Operations Research. ,vol. 18, pp. 107- 118 ,(1970) , 10.1287/OPRE.18.1.107
Peter J. Kalman, Michael D. Intriligator, Generalized Comparative Statics with Applications to Consumer Theory and Producer Theory International Economic Review. ,vol. 14, pp. 473- 486 ,(1973) , 10.2307/2525935
Trout Rader, Nice Demand Functions Econometrica. ,vol. 41, pp. 913- 935 ,(1973) , 10.2307/1913814
Kenneth J. Arrow, Alain C. Enthoven, QUASI-CONCAVE PROGRAMMING Econometrica. ,vol. 29, pp. 779- ,(1961) , 10.2307/1911819
Lionel McKenzie, Demand Theory Without a Utility Index The Review of Economic Studies. ,vol. 24, pp. 185- 189 ,(1957) , 10.2307/2296067
Freddy Delbaen, Economies with a finite set of equilibria Econometrica. ,vol. 38, pp. 179- 185 ,(1970) , 10.1017/CCOL052123736X.015
G. Debreu, VALUATION EQUILIBRIUM AND PARETO OPTIMUM. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 40, pp. 588- 592 ,(1954) , 10.1073/PNAS.40.7.588