Non-linear non-planar vibrations of geometrically imperfect inextensional beams. Part II—Bifurcation analysis under base excitations

作者: O. Aghababaei , H. Nahvi , S. Ziaei-Rad

DOI: 10.1016/J.IJNONLINMEC.2008.10.008

关键词: MathematicsFixed pointGalerkin methodNonlinear systemMathematical analysisVibrationDifferential equationInertial frame of referenceBifurcationHarmonic (mathematics)

摘要: Abstract The non-linear non-planar steady-state responses of a near-square cantilevered beam (a special case inextensional beams) with general imperfection under harmonic base excitation is investigated. By applying the combination multiple scales method and Galerkin procedure to two integro-differential equations derived in part I, modulation coupled first-order differential are obtained for primary resonance one-to-one internal resonance. contain linear imperfection-induced terms addition cubic geometric inertial terms. Variations response amplitude curves different parameters presented. Bifurcation analyses fixed points show that influence on can be significant great extent although small. phenomenon frequency island generation also observed.

参考文章(22)
J.-S. Huang, R.-F. Fung, C.-R. Tseng, DYNAMIC STABILITY OF A CANTILEVER BEAM ATTACHED TO A TRANSLATIONAL/ROTATIONAL BASE Journal of Sound and Vibration. ,vol. 224, pp. 221- 242 ,(1999) , 10.1006/JSVI.1998.2112
E. C. Haight, W. W. King, Stability of Nonlinear Oscillations of an Elastic Rod Journal of the Acoustical Society of America. ,vol. 52, pp. 899- 911 ,(1971) , 10.1121/1.1976041
O. Aghababaei, H. Nahvi, S. Ziaei-Rad, Non-linear non-planar vibrations of geometrically imperfect inextensional beams, Part I: Equations of motion and experimental validation International Journal of Non-linear Mechanics. ,vol. 44, pp. 147- 160 ,(2009) , 10.1016/J.IJNONLINMEC.2008.10.006
M. R. M. Crespo da Silva, C. C. Glynn, Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. II. Forced Motions Journal of Structural Mechanics. ,vol. 6, pp. 449- 461 ,(1978) , 10.1080/03601217808907349
Michael W. Hyer, Whirling of a base‐excited cantilever beam Journal of the Acoustical Society of America. ,vol. 65, pp. 931- 939 ,(1979) , 10.1121/1.382597
M. R. M. Crespo da Silva, On the whirling of a base‐excited cantilever beam Journal of the Acoustical Society of America. ,vol. 67, pp. 704- 706 ,(1980) , 10.1121/1.383899
S.K. Dwivedy, R.C. Kar, Simultaneous combination and 1:3:5 internal resonances in a parametrically excited beam–mass system International Journal of Non-linear Mechanics. ,vol. 38, pp. 585- 596 ,(2003) , 10.1016/S0020-7462(01)00117-2
Angelo Luongo, Angelo Di Egidio, Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam conference on computational structures technology. ,vol. 84, pp. 1596- 1605 ,(2006) , 10.1016/J.COMPSTRUC.2006.01.004